Time-like geodesic structure of a spherically symmetric black hole in the brane-world  被引量:1

Time-like geodesic structure of a spherically symmetric black hole in the brane-world

在线阅读下载全文

作  者:周盛 陈菊华 王永久 

机构地区:[1]College of Physics and Information Science, Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of the Ministry of Education, Hunan Normal University

出  处:《Chinese Physics B》2011年第10期96-100,共5页中国物理B(英文版)

基  金:supported by the National Natural Science Foundation of China (Grant No. 10873004);the Program for Excellent Talents in Hunan Normal University (Grant No. ET10803);the State Key Development Program for Basic Research Project of China(Grant No. 2010CB832803);the Key Project of the National Natural Science Foundation of China (Grant No. 10935013);the Constructing Program of the National Key Discipline;the Program for Changjiang Scholars and Innovative Research Teamin University (Grant No. IRT0964)

摘  要:Recently Malihe Heydari-Fard obtained a spherically symmetric exterior black hole solution in the brane-world scenario, which can be used to explain the galaxy rotation curves without postulating dark matter. By analysing the particle effective potential, we have investigated the time-like geodesic structure of the spherically symmetric black hole in the brane-world. We mainly take account of how the cosmological constant α and the stellar pressure β affect the time-like geodesic structure of the black hole. We find that the radial particle falls to the singularity from a finite distance or plunges into the singularity, depending on its initial conditions. But the non-radial time-like geodesic structure is more complex than the radial case. We find that the particle moves on the bound orbit or stable (unstable) circle orbit or plunges into the singularity, or reflects to infinity, depending on its energy and initial conditions. By comparing the particle effective potential curves for different values of the stellar pressureβ and the cosmological constant α, we find that the stellar pressure parameter β does not affect the time-like geodesic structure of the black hole, but the cosmological constant a has an impact on its time-like geodesic structure.Recently Malihe Heydari-Fard obtained a spherically symmetric exterior black hole solution in the brane-world scenario, which can be used to explain the galaxy rotation curves without postulating dark matter. By analysing the particle effective potential, we have investigated the time-like geodesic structure of the spherically symmetric black hole in the brane-world. We mainly take account of how the cosmological constant α and the stellar pressure β affect the time-like geodesic structure of the black hole. We find that the radial particle falls to the singularity from a finite distance or plunges into the singularity, depending on its initial conditions. But the non-radial time-like geodesic structure is more complex than the radial case. We find that the particle moves on the bound orbit or stable (unstable) circle orbit or plunges into the singularity, or reflects to infinity, depending on its energy and initial conditions. By comparing the particle effective potential curves for different values of the stellar pressureβ and the cosmological constant α, we find that the stellar pressure parameter β does not affect the time-like geodesic structure of the black hole, but the cosmological constant a has an impact on its time-like geodesic structure.

关 键 词:time-like geodesics effective potential spherically symmetric black hole 

分 类 号:P145.8[天文地球—天体物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象