检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]Department of Modern Physics, University of Science and Technology of China
出 处:《Chinese Physics B》2011年第10期452-456,共5页中国物理B(英文版)
基 金:supported by the National Natural Science Foundation of China (Grant No. 10835006);the "211 Project" for Key Discipline Construction in University of Science and Technology of China
摘 要:This paper studies the pressure-induced phase transition between zincblende (B3) and NaC1 (B1) structure ZnSe by using the hydrostatic pressure first-principles pseudopotential plane wave method. The energy-volume and enthalpy- pressure curves are employed to estimate the transition pressure. It is found that ZnSe undergoes a first-order phase transition from the B3 structure to the B1 structure at approximately 15 GPa derived from the energy-volume relation and 14 GPa based on deduction from enthalpy pressure data. The pressure-related positron bulk lifetimes of the two ZnSe structures are calculated with the atomic superposition approximation method. In comparison with the 13.4% reduction in volume of ZnSe at the transition pressure, the positron bulk lifetime decreases more significantly and the relative value declines up to 22.3%. The results show that positron annihilation is an effective technique to identify and characterize the first-order phase transition and can give valuable information about changes in micro-scale, such as volume shrinkage and compressibility.This paper studies the pressure-induced phase transition between zincblende (B3) and NaC1 (B1) structure ZnSe by using the hydrostatic pressure first-principles pseudopotential plane wave method. The energy-volume and enthalpy- pressure curves are employed to estimate the transition pressure. It is found that ZnSe undergoes a first-order phase transition from the B3 structure to the B1 structure at approximately 15 GPa derived from the energy-volume relation and 14 GPa based on deduction from enthalpy pressure data. The pressure-related positron bulk lifetimes of the two ZnSe structures are calculated with the atomic superposition approximation method. In comparison with the 13.4% reduction in volume of ZnSe at the transition pressure, the positron bulk lifetime decreases more significantly and the relative value declines up to 22.3%. The results show that positron annihilation is an effective technique to identify and characterize the first-order phase transition and can give valuable information about changes in micro-scale, such as volume shrinkage and compressibility.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28