检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]郑州铁路职业技术学院信息工程系,河南郑州450052
出 处:《微电子学与计算机》2011年第10期164-167,172,共5页Microelectronics & Computer
基 金:河南省教育厅自然科学研究指导计划项目(2009C520010)
摘 要:为了更好地反映各种相关因素对客运量的影响,实现铁路客运量预测模型中影响因素的优化选择,采用灰色理论对影响因素进行分析,并针对传统灰关联分析在具体应用中存在的关联评价值趋于均匀化、分辨系数取值影响排序结果等不足,提出一种采用动态分辨系数的铁路客运量灰关联分析方法,从而得到各因素对客运量的关联度,实现铁路客运量预测模型中影响因素的优化选择.仿真实验以河南省铁路客运量为例,结果表明预测精度得到了提高,此方法可行并且有效.In order to better unfold the influences of related factors on railway passenger traffic volume to optimize the selection of factors influencing railway passenger traffic forecast modeling,this paper analyzes the influencing factors by the grey theory and introduces a novel grey correlation analysis approach to railway passenger traffic volume with dynamic resolution coefficients,considering the weaknesses of traditional correlation analysis embodied in specific applications such as relation appraisal tending to be equalized and sorting results subject to the impact of discrimination coefficient value.Hence the relations between diverse factors and passenger traffic volume are uncovered,which can help to optimize the selection of factors influencing railway traffic volume forecast modeling.With the railway passenger traffic volume in Henan Province taken for instance,the simulation results testify that the accuracy of forecast has been increased,proving that the approach adopted here is feasible and effective.
关 键 词:铁路客运量预测 动态分辨系数 影响因素优化选择 灰关联分析
分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147