LF闭包空间中的可数层仿紧集  

Countable Sheaf Paracompact Sets in LF Closure Spaces

在线阅读下载全文

作  者:孙军娜[1] 

机构地区:[1]渭南师范学院科技处,陕西渭南714000

出  处:《渭南师范学院学报》2011年第10期58-61,共4页Journal of Weinan Normal University

摘  要:仿紧性是模糊拓扑学中的重要概念.在LF闭包空间中层仿紧性的基础上,介绍了可数层仿紧性,并刻画了其基本特征.研究了LF闭包空间中可数层仿紧性的性质:对Cˇech闭包算子的像集可遗传,与可数仿紧集的乘积是可数层仿紧集,是"L-好的推广",具有LF弱同胚不变性.The paracompact is the important property of the F-topology spaces. In this paper, the concept of countable sheaf paraeompact is introduced based on the sheaf paracompact in LF closure spaces. Its characteristics are studied. The properties of countable sheaf paracompact in LF closure spaces are investigated: hereditary with respect to sets as closure operator, the product with paracompaet is countable sheaf paracompact, and it is proved that the countable sheaf paracompact is "L-good extension", with weakly invariant with embryo.

关 键 词:LF闭包空间 α-包域族 余加细 强α-局部有限 

分 类 号:O189.1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象