UV-Irradiation Cured Organic-inorganic Hybrid Nanocomposite Initiated by Ethoxysilane-modified Multifunctional Polymeric Photoinitiator through Sol-gel Process  被引量:5

UV-Irradiation Cured Organic-inorganic Hybrid Nanocomposite Initiated by Ethoxysilane-modified Multifunctional Polymeric Photoinitiator through Sol-gel Process

在线阅读下载全文

作  者:Hu, Lihua Shi, Wenfang 

机构地区:[1]Chinese Academy of Sciences Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China

出  处:《Chinese Journal of Chemistry》2011年第9期1961-1968,共8页中国化学(英文版)

基  金:Project supported by the National Natural Science Foundation of China (No. 50973100).

摘  要:The UV-cured organic-inorganic hybrid nanocomposite (nano-Si-m-PI) was prepared through the photopolymeri- zation of acrylic resin initiated by ethoxysilane-modified multifunctional oligomeric photoinitiator (Si-m-PI). The es- terification reaction of 2-hydroxy-4'-(2-hydroxyethoxy)-2-methylpropiophenone (Irgacure 2959) with thioglycolic acid, and the following addition reactions with dipentaerythritol hexaacrylate and then 3-aminopropyltriethoxysilane were carried out for preparing the Si-m-PI. The Si-m-PI exhibits the similar UV absorption and molar extinction coefficient with Irgacure 2959. The photoinitiating activity study by photo-DSC analysis showed that the Si-m-PI possesses high photopolymerization rate at the peak maximum (Rpax) and final unsaturation conversion (Pf) in the cured hybrid films. From the scanning electron microscope (SEM) observation, the SiO2 nanoparticles dispersed uniformly in the formed nano-Si-m-PI, whereas the aggregation of nanoparticals occurred in nano-Irg, which was prepared through the photopolymerization of acrylic resin initiated by Irgacure 2959. Moreover, compared with the UV-cured pure polymer and nano-Irg, the nano-Si-m-PI showed remarkably enhanced thermal stability and mechanical properties.The UV-cured organic-inorganic hybrid nanocomposite (nano-Si-m-PI) was prepared through the photopolymeri- zation of acrylic resin initiated by ethoxysilane-modified multifunctional oligomeric photoinitiator (Si-m-PI). The es- terification reaction of 2-hydroxy-4'-(2-hydroxyethoxy)-2-methylpropiophenone (Irgacure 2959) with thioglycolic acid, and the following addition reactions with dipentaerythritol hexaacrylate and then 3-aminopropyltriethoxysilane were carried out for preparing the Si-m-PI. The Si-m-PI exhibits the similar UV absorption and molar extinction coefficient with Irgacure 2959. The photoinitiating activity study by photo-DSC analysis showed that the Si-m-PI possesses high photopolymerization rate at the peak maximum (Rpax) and final unsaturation conversion (Pf) in the cured hybrid films. From the scanning electron microscope (SEM) observation, the SiO2 nanoparticles dispersed uniformly in the formed nano-Si-m-PI, whereas the aggregation of nanoparticals occurred in nano-Irg, which was prepared through the photopolymerization of acrylic resin initiated by Irgacure 2959. Moreover, compared with the UV-cured pure polymer and nano-Irg, the nano-Si-m-PI showed remarkably enhanced thermal stability and mechanical properties.

关 键 词:polymer-matrix composites sol-gel process mechanical property UV-CURING 

分 类 号:TQ314.241[化学工程—高聚物工业] TB332[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象