检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵荣军[1] 霍小梅[1] 上官蔚蔚[1] 王玉荣[1]
机构地区:[1]中国林业科学研究院木材工业研究所,北京100091
出 处:《光谱学与光谱分析》2011年第11期2948-2951,共4页Spectroscopy and Spectral Analysis
基 金:中国林业科学研究院基本科研业务费专项项目(CAFYBB2008008);国家自然科学基金重点项目(30730076)资助
摘 要:采用近红外光谱分析技术,对粗皮桉木材气干密度校正模型的影响因素进行比较研究。使用直接测量法测量了粗皮桉木材的气干密度,并用近红外光谱仪采集试样的近红外漫反射光谱,对不同切面、厚度、含水率和粗糙度的粗皮桉木材试样的原始光谱进行二阶导数预处理并选择一定光谱段建立回归模型。以50~140个试样作为校正集建立木材气干密度的偏最小二乘法校正模型,使用外部验证法进行验证。结果表明,试样切面、厚度、粗糙度和含水率对粗皮按木材气干密度的预测结果均有影响,其中分别是选取试样横切面、厚度为2~5mm、含水率为12%和粗糙度较细致时的木材试样所建立的各个近红外光谱预测模型效果最好。Near infrared spectroscopy(NIR)technique was applied to compare the influence factors of Eucalyptus pellita's air-dry density.Air-dry density of eucalypt wood was tested by direct measurement.After collecting the near infrared reflectance spectra of samples in different section and with different thickness,moisture content and roughness,the NIR spectra were preprocessed with the second-derivative and the regression models were built in certain spectra.The calibration models were established using 50~140 samples with the partial least squares method and validated with external validation method.The results showed that the predicted results were influenced by sample's section,thickness,roughness and moisture content.The best near infrared spectroscopy prediction model was built under the condition of transverse section,2~5 mm thickness,12% moisture content and meticulous roughness of wood.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222