声纳浮标阵目标搜索优化布放算法  被引量:3

Research on Sonobuoys Deployment in Searching Underwater Target

在线阅读下载全文

作  者:匡贡献[1] 谢志敏[1] 

机构地区:[1]总参谋部气象水文局

出  处:《海军航空工程学院学报》2011年第5期508-512,共5页Journal of Naval Aeronautical and Astronautical University

基  金:航空科学基金资助项目(20095184);泰山学者建设工程专项经费资助项目

摘  要:为提高声纳浮标阵的目标搜索效率,文章首先建立目标运动模型和累积搜索概率的计算方法,然后提出了基于多点随机搜索、分区分支界定和遗传算法的浮标阵优化布放方法。仿真结果表明:这3种优化方法均优于传统布放方法,多点随机搜索算法性能最差但适合短时间制定布放策略;分区分支界定算法适合优化较少参数的浮标阵形,保证能找到最优点;对于较多的浮标阵形参数,利用遗传算法优化最好但运算时间较长。It is important to optimize sonobuoys deployment for enhancing cumulative detection probability in aviation ASW. Firstly, the target motion model was established and method of calculation cumulative detection probability was interpreted. Then three kinds of global optimization algorithms were designed validly for sonobuoys deployment, based on multi-start random search, branch-and-bound based partition and a genetic algorithm. The simulation results showed that the multi-start random search algorithm was comparatively weak but fit for give deployment scheme in short time, branch-and-bound based partition algorithm could reach optimization but only fit few sonobouys array parameters, and GA was fit for sonobouys array with many parameters but need long time to calculate

关 键 词:声纳浮标布放 分支界定 遗传算法 

分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象