基于奇异值分解的方向估计改进方法  被引量:5

Modified Method for Bearing Estimation Based on Singular Value Decomposition

在线阅读下载全文

作  者:陈志菲[1] 孙进才[1] 侯宏[1] 

机构地区:[1]西北工业大学航海学院,西安710072

出  处:《数据采集与处理》2011年第5期499-502,共4页Journal of Data Acquisition and Processing

基  金:国家自然科学基金(60672136)资助项目

摘  要:基于相位匹配原理的奇异值分解法(Singular value decomposition based on signal phase matching,SVDSPM)的波达方向估计的均方根误差在高信噪比下无法逼近克拉美罗界,针对该问题提出了基于相位匹配原理的修正奇异值分解法(Modified singular value decomposition based on signal phase matching,MSVDSPM)。该方法将阵列接收信号转换到频域,取相位匹配后各阵元中心频点频谱与其均值差值的距离平方和的倒数作为方向估计算子。仿真表明MSVDSPM方向估计的均方根误差可以在高信噪比下逼近克拉美罗界。MSVDSPM保持了SVDSPM在单源入射时的尖锐谱峰,它等价于常规波束形成方法,并且其主瓣宽度与分析频率无关。The modified singular value decomposition method based on signal phase matching (MSVDSPM) is presented to make the root mean square error of the direction of arrival (DOA) estimation of singular value decomposition based on signal phase matching (SVDSPM) close to the Cramer-Rao bound at high signal-to-noise ratio. Firstly, the sensor outputs are transformed to the frequency domain. Then the reciprocal of the square summation of the distance between the sensor output spectra and their mean value at the center frequency bin is taken as the DOA estimator. The simulation results show that the MSVDSPM has a better performance in DOA estimation than that of SVDSPM. MSVDSPM is a beamforming method preserving the sharp peak of the SVDSPM spectrum in the case of single source. The beam width of the MSVDSPM spectrum is independent of the analysis frequency.

关 键 词:波达方向 波束形成 奇异值分解 相位匹配 

分 类 号:TN911.7[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象