检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:欧阳伦群[1]
机构地区:[1]湖南科技大学数学与计算科学学院,湖南湘潭411201
出 处:《数学物理学报(A辑)》2011年第5期1209-1219,共11页Acta Mathematica Scientia
基 金:国家自然科学基金(10771058;11071062);湖南省自然科学基金(10jj3065);湖南省教育厅重点项目(10A033)资助
摘 要:作为对零化子与相伴素理想概念的推广,该文引进了弱零化子与弱相伴素理想的定义,并探讨了环R的弱相伴素理想与它的Ore扩张环R[x;α,δ]的弱相伴素理想之间的关系.证明了如果环R是(α,δ)-相容的可逆环,那么NAss(R[x;α,δ])={P[x;α,δ]| P∈NAss(R)},其中NAss(R[x;α,δ])与NAss(R)分别是环R[xα,δ]与环R的所有弱相伴素理想集合.这样Ore扩张环R[x;α,δ]的弱相伴素理想就直接可以用环R的弱相伴素理想来刻画.从而将文献[3,5 6]中的相关结论推广到更一般的情形.As a generalization of annihilator and associated primes, in this paper, the author introduces the notions of weak annihilator and weak associated primes, and investigates the relationship between the weak associated primes of a ring R and those of the Ore extension ring R[x; α,δ]. It is proved that if R is an (α,δ)-compatible reversible ring, then NAss(R[x; α,δ]) = {P[x;α,δ I P e NAss(R)}, where NAss(R[x; α,δ]) and NAss(R) stand for the set of all weak associated primes over R[x; α,δ] and that over R, respectively. So all associ- ated primes over R[x; α,δ] can be described in terms of the weak associated primes over R in a very straightforward way. Consequently, several results in [3], [5], [6] are generalized to a more general setting.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.64