Twisted smash product for Hopf quasigroups  

Hopf拟群上扭曲冲积(英文)

在线阅读下载全文

作  者:方小利[1] 王栓宏[1] 

机构地区:[1]东南大学数学系,南京211189

出  处:《Journal of Southeast University(English Edition)》2011年第3期343-346,共4页东南大学学报(英文版)

基  金:The National Natural Science Foundation of China( No. 10971188 );the Natural Science Foundation of Zhejiang Province(No.Y6110323);Jiangsu Planned Projects for Postdoctoral Research Funds(No. 0902081C);Zhejiang Provincial Education Department Project (No.Y200907995);Qiantang Talents Project of Science Technology Department of Zhejiang Province (No. 2011R10051)

摘  要:In order to study algebraic structures of parallelizable sphere s7, the notions of quasimodules and biquasimodnle algebras over Hopf quasigroups, which are not required to be associative, are introduced. The lack of associativity of quasimodules is compensated for by conditions involving the antipode. The twisted smash product for Hopf quasigroups is constructed using biquasimodule algebras, which is a generalization of the twisted smash for Hopf algebras. The twisted smash product and tensor coproduct is turned into a Hopf quasigroup if and only if the following conditions (h1→a) h2 = (h2→a) h1, (a←S(h1)) h2 = (a←S(h2)) h1, hold. The obtained results generalize and improve the corresponding results of the twisted smash product for Hopf algebras.为了研究平行球面s7的代数结构,引进了Hopf拟群上的拟模和双拟模代数的概念,由于这些概念的公理中模缺少结合性的条件,通过增加对极的条件来弥补结合性的条件.并通过双拟模代数构造了扭曲冲积的概念,事实上这种扭曲冲积是Hopf代数上扭曲冲积的推广,并且证明了扭曲冲积与张量余积成为Hopf拟群的充要条件为当且仅当下列条件(h1→a)h2=(h2→a)h1,(a←S(h1))h2=(a←S(h2))h1成立.所得到的结果推广并改进了Hopf代数上扭曲冲积一些相应的结果.

关 键 词:Hopf quasigroup quasimodule twisted smash product 

分 类 号:O153[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象