Spatiotemporal variations in mid-upper tropospheric methane over China from satellite observations  被引量:7

Spatiotemporal variations in mid-upper tropospheric methane over China from satellite observations

在线阅读下载全文

作  者:ZHANG XingYing BAI WenGuang ZHANG Peng WANG WeiHe 

机构地区:[1]Key Laboratory of Radiometric Calibration and Validation for Environmental Satellites, National Satellite Meteorological Center, China Meteorological Administration, Beijing 100081, China [2]2 State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

出  处:《Chinese Science Bulletin》2011年第31期3321-3327,共7页

基  金:supported by the National Natural Science Foundation of China (40905056);the Public Industry-specific Fund for Meteorology (GYHY201106045);the State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC-KF-2008-11)

摘  要:Spaceborne measurements by the Atmospheric Infrared Sounder (AIRS) on the EOS/Aqua satellite provide a global view of methane (CH 4 ) distribution in the mid-upper troposphere (MUT-CH 4 ). The focus of this study is to analyze the spatiotemporal varia- tions in MUT-CH 4 over China from 2003 to 2008. Validation of AIRS CH 4 products versus Fourier transform infrared profiles demonstrates that its RMS error is mostly less than 1.5%. A typical atmospheric methane profile is found that shows how concentrations decrease as height increases because of surface emissions. We found that an important feature in the seasonal variation in CH 4 is the two peaks that exist in summer and winter in most parts of China, which is also observed in in-situ measurements at Mt. Waliguan, Qinghai Province, China (36.2879°N 100.8964°E, 3810 m). Also, in the summer, only one peak existed in western and southern China since there are no more significant anthropogenic sources in winter than at any other time of the year. Further analysis of the deseasonalized time-series of AIRS CH 4 in three fixed pressure layers of AIRS from 2003 to 2008 indicates that CH 4 in the Northern Hemisphere has increased abruptly since 2007, with no significant increase occurring before 2007. The increase in China is generally more significant than in other areas around the world, which again correlates with in-situ measurements at Mt. Waliguan.Spaceborne measurements by the Atmospheric Infrared Sounder (AIRS) on the EOS/Aqua satellite provide a global view of methane (CH4) distribution in the mid-upper troposphere (MUT-CH4). The focus of this study is to analyze the spatiotemporal variations in MUT-CH4 over China from 2003 to 2008. Validation of AIRS CH4 products versus Fourier transform infrared profiles demonstrates that its RMS error is mostly less than 1.5%. A typical atmospheric methane profile is found that shows how concentrations decrease as height increases because of surface emissions. We found that an important feature in the seasonal variation in CH4 is the two peaks that exist in summer and winter in most parts of China, which is also observed in in-situ measurements at Mt. Waliguan, Qinghai Province, China (36.2879°N 100.8964°E, 3810 m). Also, in the summer, only one peak existed in western and southern China since there are no more significant anthropogenic sources in winter than at any other time of the year. Further analysis of the deseasonalized time-series of AIRS CH4 in three fixed pressure layers of AIRS from 2003 to 2008 indicates that CH4 in the Northern Hemisphere has increased abruptly since 2007, with no significant increase occurring before 2007. The increase in China is generally more significant than in other areas around the world, which again correlates with in-situ measurements at Mt. Waliguan.

关 键 词:中国西部 时空变化 卫星观测 对流层 甲烷 上层 季节性时间序列 傅里叶变换红外光谱 

分 类 号:X831[环境科学与工程—环境工程] X87

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象