检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京邮电大学网络与交换技术国家重点实验室,北京100876 [2]东信北邮信息技术有限公司,北京100191
出 处:《计算机系统应用》2011年第11期80-85,共6页Computer Systems & Applications
基 金:国家杰出青年科学基金(60525110);国家973计划(2007CB307100;2007CB307103);国家自然科学基金(61072057;60902051);中央高校基本科研业务费专项资金(BUPT2009RC0505);国家科技重大专项(2011ZX03002-001-01;2011ZX03002-002-01)
摘 要:在研究了目前主流的视频转码方案基础上,提出了一种分布式转码系统。系统采用HDFS(Hadoop Distributed File System)进行视频存储,利用MapReduce思想和FFMPEG进行分布式转码。详细讨论了视频分布式存储时的分段策略,以及分段大小对存取时间的影响。同时,定义了视频存储和转换的元数据格式。提出了基于MapReduce编程框架的分布式转码方案,即Mapper端进行转码和Reducer端进行视频合并。实验数据显示了转码时间随视频分段大小和转码机器数量不同而变化的趋势。结果表明,相比单机转码,提出的系统在采用8台机器并行转码时,可以节约80%左右的时间。Based on study of current video transcoding solutions, we proposed a distributed transcoding system. Video resources are stored in HDFS(Hadoop Distributed File System) and transcodod by MapReduce program using FFMPEG In this paper, video segmentation strategy on distributed storage and how they affect accessing time are discussed. We also defined metadata of video formats and transcoding parameters. The distributed transcoding framework is proposed on basis of MapReduce programming model. Segmented source videos are transcoding in map tasks and merged into target video in reduce task. Experimental results show that transcoding time is dependent on segmentation size and trascoding cluster size. Compared with single PC, the proposed distributed video transcoding system implemented on 8 PCs can decrease about 80% of the transcoding time.
关 键 词:视频转码 分布式内容处理 HADOOP FFMPEG
分 类 号:TN919.81[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7