检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨晓燕[1]
出 处:《闽江学院学报》2011年第5期67-71,共5页Journal of Minjiang University
基 金:福建省自然科学基金资助项目(2009J01284)
摘 要:加权融合算法是多传感器数据融合中的常用方法,但加权因子的确定非常困难并直接影响算法的性能.文章提出利用改进的粒子群优化算法对各个传感器的加权因子进行自适应优化,引入种群进化度、聚合度来反映种群的多样性,当种群多样性低于阈值时执行变异操作,并交替使用基于聚合度、进化度的自适应惯性权重函数,从而避免算法陷入局部最优解.通过UCI数据集测例表明本文算法是一种较有效的多传感器数据融合方法,相对其它算法具有较高的融合精度.The weighted fusion algorithm is a common method of multi-sensor data fusion,but it is hard to determine the suitable weighting factors,which directly influence the performance of the algorithm.Therefore,an improved particle swarm optimization(PSO) algorithm is proposed to self-adaptively optimize the weighting factor of each sensor.Evolution degree and aggregation degree are introduced to reflect the population ' s diversity.When the diversity declines to some degree,a mutation operation is used and the adaptive inertia weighting function based on the evolution degree or the aggregation degree is used alternately,which can effectively avoid the particle swarm optimization algorithm falling into local optimization.The experiments on UCI datasets show that the proposed algorithm is a kind of effective data fusion method and it has higher fusion precision than other algorithms.
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49