检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]桂林电子科技大学电子工程与自动化学院,广西桂林541004 [2]桂林电子科技大学计算机科学与工程学院,广西桂林541004
出 处:《传感器与微系统》2011年第11期135-137,141,共4页Transducer and Microsystem Technologies
基 金:国家自然科学基金资助项目(60964001);广西自然科学基金资助项目(09910192);广西信息与通讯实验室主任基金资助项目(01902)
摘 要:针对目前相似重复记录检测方法不能有效处理大数据量的问题,提出一种基于熵的特征优选分组聚类的算法。该方法通过构造一个基于对象间相似度的熵度量,对原始数据集中各属性进行重要性评估,筛选出关键属性集,并依据关键属性将数据划分为不相交的小数据集,在各小数据集中用DBSCAN聚类算法进行相似重复记录的检测。理论分析和实验结果表明:该方法识别精度和检测效率较高。At present, the approximately duplicate records of massive data can not be detected effectively by current methods, an algorithm based on entropy feature selection grouping clustering ( FSGC ) is proposed. The basic idea is that through constructing an entropy metric based on similarity between objects, the importance of each property can be evaluated and a key property subset can be obtained, According to the key property to split the data sets into small data sets, the approximately duplicated records are identified based on the algorithm of density-based spatial of applications with noise (DBSCAN). The theory analysis and experimental results show that identification precision and detection efficiency of the method are high and it can effectively solve the problems of identification in approximately duplicate records of the massive data set.
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7