机构地区:[1]Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chonqqing 400044, China [2]Department of Ophthalmology, Southwest Hospital, Third Military Medical University of Chinese PLA, Chongqing 400038, China [3]Department of Electrical and Computer Engineering, University Of Nevada, Las vegas, NV 89154, USA
出 处:《Neural Regeneration Research》2011年第26期2042-2046,共5页中国神经再生研究(英文版)
基 金:the National High Technology and Development Program of China, No. 2007AA04Z324;the National Natural Science Foundation of China, No. 30970758, 31070882
摘 要:To explore the effect of the location of a visual stimulus on neural responses in the primary visual cortex (V1), a micro-electromechanical system-based microelectrode array with nine channels was implanted on the cerebral dura mater of V1 in adult cats. 2 Hz pattern reversal checkerboard stimul were used to stimulate the four visual quadrants (i.e., upper left, upper right, lower left, and lower right fields). The results showed that there was a N75 component of the visual evoked potential around 50-80 ms after the onset of a checkerboard stimulus, and the onset of these N75 peaks varied with different stimulus locations. The checkerboard stimuli Jnduced shorter latencJes in the contralateral V1 than in the ipsilateral V1, while the checkerboard stimulus in the upper half visual field induced shorter latencies for N75. These results suggested that the pattern-reversal stimuli induced neural activities in V1 that can be recorded with multichannel microelectrodes, and more detailed temporal and spatial properties can be measured.To explore the effect of the location of a visual stimulus on neural responses in the primary visual cortex (V1), a micro-electromechanical system-based microelectrode array with nine channels was implanted on the cerebral dura mater of V1 in adult cats. 2 Hz pattern reversal checkerboard stimul were used to stimulate the four visual quadrants (i.e., upper left, upper right, lower left, and lower right fields). The results showed that there was a N75 component of the visual evoked potential around 50-80 ms after the onset of a checkerboard stimulus, and the onset of these N75 peaks varied with different stimulus locations. The checkerboard stimuli Jnduced shorter latencJes in the contralateral V1 than in the ipsilateral V1, while the checkerboard stimulus in the upper half visual field induced shorter latencies for N75. These results suggested that the pattern-reversal stimuli induced neural activities in V1 that can be recorded with multichannel microelectrodes, and more detailed temporal and spatial properties can be measured.
关 键 词:CHECKERBOARD cerebral dura mater visual evoked potential microelectrode array primary visual cortex
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...