检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴磊宏[1] 高秀梅[2] 王林丽[1] 刘骞[1] 范骁辉[1] 王毅[1] 程翼宇[1]
机构地区:[1]浙江大学中药科学与工程学系,浙江杭州310058 [2]天津中医药大学天津市现代中药省部共建国家重点实验室,天津300193
出 处:《中国中药杂志》2011年第21期2907-2910,共4页China Journal of Chinese Materia Medica
基 金:科技部国际合作项目(2009DFB03510)
摘 要:目的:以常用中药附子为例,探索以中药化学成分预测其作用靶点,并构建中药多成分-多靶点网络。方法:根据1 401个美国FDA批准上市药物的分子结构及其相应靶点数据,采用随机森林法建立靶点预测模型;进而依据附子所含化学成分预测其作用靶点,并据此构建附子多成分-多靶点网络。结果:以附子的22个化学成分预测出多个作用靶点,预测结果得到文献数据印证。所建网络模型中每个化合物的平均靶点数为16.3,平均每个靶点与4.77个化合物相关联,反映出中药"多成分、多靶点"特点。结论:本方法可用于发现中药的某些潜在作用靶点。Objective: To predict multi-targets by multi-compounds found in Aconiti Lateralis Radix Praeparata and construct the corresponding multi-compound-multi-target network. Method : Based on drug-target relationships of FDA approved drugs, a model for predicting targets was established by random forest algorithm. This model was then applied to predict the targets of Aconiti Lateralis Radix Praeparata and construct the multi-compound-multi-target network. Result: The predicted targets of 22 compounds of Aconiti Lateralis Radix Praeparata are validated by literature. Each compound in the established network was correlated with 16. 3 targets on average, while each target was correlated with 4. 77 compounds on average, which reflects the "multi-compound and multi-target" char- acteristic of Chinese medicine. Conclusion: The proposed approach can be used to find potential targets of Chinese medicine.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3