检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:唐敏[1] 杨宏文[1] 胡卫东[1] 郁文贤[2]
机构地区:[1]国防科学技术大学ATR重点实验室,湖南长沙410073 [2]上海交通大学电子信息与电气工程学院,上海200030
出 处:《模糊系统与数学》2011年第5期136-143,共8页Fuzzy Systems and Mathematics
基 金:国家部委基金资助项目(513060302)
摘 要:模糊关系是模糊粗糙分析的基础。从属性数据生成模糊关系是模糊粗糙集实际应用中的重要问题。针对模糊属性刻画,给出了生成几种T相似性关系的方法。首先,对于每一个属性,分别生成一个T相似性关系。而后,通过聚合算子来合成这些T相似性关系,以得到一个综合的T相似性关系。The data descriptions to objects are generally classified into two types,the object data,in which each object is described explicitly by a list of attributes,and the relational data,in which only pairwise similarity or dissimilarity are given.Object data can always be transformed into relational data by using certain distance or similarity function.Processing after transformation is a useful strategy in the case of mixed data types.Moreover,it is more convenient to analyze the resulting relational data when the attribute characterizations of object data are fuzzy.The construction of T-similarity relations from fuzzy attribute characterizations is considered in this study.We develop a scheme for systematically generating T-similarity relations for typical T-norms.Specifically,a partial T-similarity relation is derived for each attribute first,to which aggregation operators are applied to obtain a combined T-similarity relation.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30