准静态弹性成像技术检测聚焦超声致离体组织损伤  被引量:4

Quasi-static elastography in monitoring in vitro tissue injuries induced by focused ultrasound

在线阅读下载全文

作  者:王彬[1] 凌涛[2] 沈勇[1] 郑海荣[2] 邹建中[1] 李发琪[1] 

机构地区:[1]重庆医科大学生物医学工程学院重庆市超声医学工程重点实验室超声医学工程省部共建国家重点实验室培育基地,重庆400016 [2]中国科学院深圳先进技术研究院生物医学与健康工程研究所保罗劳特伯医学影像中心,广东深圳518055

出  处:《中国医学影像技术》2011年第11期2317-2321,共5页Chinese Journal of Medical Imaging Technology

基  金:国家重点基础研究发展计划(2011CB707902);国家自然科学基金(30830040;30970827)

摘  要:目的用准静态弹性成像检测聚焦超声(FUS)在离体组织中形成的损伤。方法在仿体实验中采取多种方法提高运动估计的精度。通过分段线性拟合等算法对位移数据进行后处理,优化位移估计结果,采用基于小波变换的数字低通差分算法抑制应变估计中高频噪声的干扰。在此基础上用准静态弹性成像检测FUS在离体猪肌肉组织中形成的损伤。结果采用分段线性拟合算法和基于小波变换的数字低通差分算法可显著改善运动估计的准确性。弹性成像可检测小剂量FUS辐照后在组织内形成的损伤,主要表现为损伤区域的力学特性与周围组织具有明显差异。结论弹性成像可用于评价FUS形成的组织损伤。Objective To monitor injuries of in vitro tissue induced by focused ultrasound (FUS) irradiation with quasistatic elastography. Methods Several methods were used to improve the motion detection accuracy of elastography in phantom experiments. Algorithms such as piecewise linear approximation were applied to optimize the displacement data. Low pass digital difference algorithm based on wavelet transform was used to eliminate high frequency noise in displacement data during strain estimation. Experimental results on FUS induced injuries in pig muscle were introduced based on the phantom experiments. Results The accuracy of motion detection was significantly enhanced by using algorithms such as piecewise linear approximation and low pass digital difference algorithm based on wavelet transform. Injuries induced by small dosage of FUS in the tissue were successfully detected with elastography, which showed a major difference in the mechanical properties from the neighboring normal tissue. Conclusion Quasi-static elastography can evaluate the injuries induced by FUS in vitro.

关 键 词:弹性成像技术 高强度聚焦超声消融术 肿瘤 

分 类 号:R445.1[医药卫生—影像医学与核医学] R318.6[医药卫生—诊断学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象