基于差分进化的无线传感器网络二阶段定位算法  

TWO-STAGE LOCALISATION ALGORITHM FOR WIRELESS SENSOR NETWORK BASED ON DIFFERENTIAL EVOLUTION

在线阅读下载全文

作  者:武富平[1] 张瑞华[1] 

机构地区:[1]山东大学计算机科学与技术学院,山东济南250101

出  处:《计算机应用与软件》2011年第11期57-59,共3页Computer Applications and Software

基  金:国家自然科学基金(90718032)

摘  要:近年来优化算法在无线传感器网络定位算法中得到了广泛应用。在对差分进化算法研究的基础上提出一种二阶段定位算法,第一阶段在Euclidean定位算法的基础上,加入了距离路由思想,通过与未知节点距离两跳之内的两个锚节点和距离两跳之外的任一锚节点利用Euclidean算法来计算估计位置。第二阶段利用差分进化算法进行迭代寻优,提出的新算法称之为DE-Euclidean定位算法。仿真结果表明,DE-Euclidean算法明显提高了定位精度。In recent years the optimisation algorithm has been widely used in wireless sensor network localisation algorithms. Based on an in-depth study on differential evolution algorithm, the authors propose a two-stage localisation algorithm. In the first phase, based on the Euclidcan localisation algorithm, they added the idea of distance routing, which is to work with two anchor nodes within two-hop of the unknown node and with any one anchor node which locates two-hop away from the unknown node to calculate the estimated location. In the second phase,they used differential evolution algorithm to perform the iterative optimisation. The proposed algorithm is called the DE-Euclidean localisation algorithm. Simulation resuhs show that, the DE-Euclidean algorithm significantly improves the precision of localisation.

关 键 词:无线传感器网络 定位 Euclidean 差分进化 

分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象