机构地区:[1]Department of Physics,Harbin Institute of Technology [2]College of Science,Civil Aviation University of China
出 处:《Chinese Physics B》2011年第11期323-331,共9页中国物理B(英文版)
基 金:supported by the National Basic Research Program of China(Grant No.2007CB3070001);the Fundamental Research Funds for the Central Universities,China(Grant No.HIT.NSRIF.2010009);the Program of Excellent Team in Harbin Institute of Technology,China;the Research Startup Foundation of Civil Aviation University of China(Grant No.2010QN03X)
摘 要:In this paper, we experimentally investigate the dark diffusional enhancement of the optimized multiplexed grating in the phenanthrenequinone doped poly (methyl methacrylate) (PQ-PMMA) photopolymer. The possibility of improving the holographic characteristics of the material through the dark enhancement is demonstrated. The optimal preillumination exposure and the optimal time interval between exposures are extracted to obtain the optimized diffraction efficiency, and their values are 3.4×103 mJ/cm2 and 2 min, respectively. The dark enhancement of the multiplexed grating is presented as an effective method to improve the response region and the dynamic range and to prevent saturation of the material. The dependence of the phenanthrenequinone concentration on the increment of the refractive index modulation is quantitatively studied, which provides a significant basis for improving the homogeneity in the multiplexed gratings using a quantitative strategy. Finally, a simple experimental procedure using the dark enhancement is introduced to improve the homogeneity of the diffraction efficiency and to avoid the complex schedule exposure.In this paper, we experimentally investigate the dark diffusional enhancement of the optimized multiplexed grating in the phenanthrenequinone doped poly (methyl methacrylate) (PQ-PMMA) photopolymer. The possibility of improving the holographic characteristics of the material through the dark enhancement is demonstrated. The optimal preillumination exposure and the optimal time interval between exposures are extracted to obtain the optimized diffraction efficiency, and their values are 3.4×103 mJ/cm2 and 2 min, respectively. The dark enhancement of the multiplexed grating is presented as an effective method to improve the response region and the dynamic range and to prevent saturation of the material. The dependence of the phenanthrenequinone concentration on the increment of the refractive index modulation is quantitatively studied, which provides a significant basis for improving the homogeneity in the multiplexed gratings using a quantitative strategy. Finally, a simple experimental procedure using the dark enhancement is introduced to improve the homogeneity of the diffraction efficiency and to avoid the complex schedule exposure.
关 键 词:PHOTOPOLYMER holographic multiplexing dark diffusional enhancement
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...