Superexchange interaction enhancement of the quantum transport in a DNA-type molecule  

Superexchange interaction enhancement of the quantum transport in a DNA-type molecule

在线阅读下载全文

作  者:王瑞 张存喜 周运清 孔令民 

机构地区:[1]Physics Department,Zhejiang Ocean University

出  处:《Chinese Physics B》2011年第11期427-432,共6页中国物理B(英文版)

基  金:supported by the Natural Science Foundation of Zhejiang Province,China(Grant Nos.Y6110250 and Y201018926)

摘  要:We use the transfer matrix method and the Green function technique to theoretically study the quantum tunnelling through a DNA-type molecule. Ferromagnetic electrodes are used to produce the spin-polarized transmission probability and therefore the spin current. The distance-dependent crossover comes from the topological variation from the one- dimensional to the two-dimensional model transform as we switch on the interstrand coupling; a new base pair will present N - 1 extrachannels for the charge and spin as N being the total base pairs. This will restrain the decay of the transmission and improve the stability of the quantum transport. The spin and charge transfer through the DNA-type molecule is consistent with the quantum tunneling barrier.We use the transfer matrix method and the Green function technique to theoretically study the quantum tunnelling through a DNA-type molecule. Ferromagnetic electrodes are used to produce the spin-polarized transmission probability and therefore the spin current. The distance-dependent crossover comes from the topological variation from the one- dimensional to the two-dimensional model transform as we switch on the interstrand coupling; a new base pair will present N - 1 extrachannels for the charge and spin as N being the total base pairs. This will restrain the decay of the transmission and improve the stability of the quantum transport. The spin and charge transfer through the DNA-type molecule is consistent with the quantum tunneling barrier.

关 键 词:quantum transport DNA SUPEREXCHANGE 

分 类 号:O469[理学—凝聚态物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象