Effect of Intensive Inorganic Fertilizer Application on Microbial Properties in a Paddy Soil of Subtropical China  被引量:5

Effect of Intensive Inorganic Fertilizer Application on Microbial Properties in a Paddy Soil of Subtropical China

在线阅读下载全文

作  者:Klemens Ekschmitt Stephanie I J Holzhauer Sabine Rauch 

机构地区:[1]Justus Liebig University,IFZ-Department of Animal Ecology,H.-Buff-Ring 26-32,D-35392 Giessen,Germany

出  处:《Agricultural Sciences in China》2011年第11期1758-1764,共7页中国农业科学(英文版)

基  金:supported by the National Basic Research Program of China (973 Program,2007CB109301);the National Key Technology R & D Program of China (2009BADC6B03);Asia-Europe Link Project (CN-Asia-Link-001,81468)

摘  要:A field experiment with rice-rice rotation was conducted since 2002 in southeast China for investigating the response of soil microbial properties to intensive nitrogen fertilizer application. The tested soil was a subtropical paddy soil derived from Quaternary red clay. Differences between treatments existed in different application rates of urea when the experiment was designed. Urea was applied in five rates, i.e., 0, 0.5, 1, 1.5, and 2 U, equivalent to 0, 0.5, 1, 1.5, and 2 times the local average amount of urea application (900 kg urea ha-~ yr-~, equivalent to 414 kg N ha-1 yr-~). In 2007, soil total nitrogen, available nitrogen, and soil organic carbon contents were increased by 10.2-27.9, 8.0-16.0, and 10.2-30.6%, respectively, in treatments with urea application rates of 0.5 to 2 U compared to control (0 U). Microbial biomass carbon and nitrogen were also increased by 3.1-30.8 and 1.3-13.9%, respectively, in treatments with urea application. Basal respiration in treatments with urea input were 9.4-29.1% higher than that in control. However, changes of bacterial functional diversity had different trends. Urea fertilization enhanced bacterial functional diversity until treatment of 1 U, but re-decreased it from treatment of 1.5 U. Principal components analysis indicated that there were intimate relationships among soil organic matter, nitrogen nutrient, microbial biomass, and respiration. Nevertheless, microbial diversity was related to soil moisture contents after urea application. We conclude here that the application of N fertilizer improved soil microbial biomass and respiratory activity. But, microbial diversity was reduced when excessive urea was applied in the tested paddy soil.A field experiment with rice-rice rotation was conducted since 2002 in southeast China for investigating the response of soil microbial properties to intensive nitrogen fertilizer application. The tested soil was a subtropical paddy soil derived from Quaternary red clay. Differences between treatments existed in different application rates of urea when the experiment was designed. Urea was applied in five rates, i.e., 0, 0.5, 1, 1.5, and 2 U, equivalent to 0, 0.5, 1, 1.5, and 2 times the local average amount of urea application (900 kg urea ha-~ yr-~, equivalent to 414 kg N ha-1 yr-~). In 2007, soil total nitrogen, available nitrogen, and soil organic carbon contents were increased by 10.2-27.9, 8.0-16.0, and 10.2-30.6%, respectively, in treatments with urea application rates of 0.5 to 2 U compared to control (0 U). Microbial biomass carbon and nitrogen were also increased by 3.1-30.8 and 1.3-13.9%, respectively, in treatments with urea application. Basal respiration in treatments with urea input were 9.4-29.1% higher than that in control. However, changes of bacterial functional diversity had different trends. Urea fertilization enhanced bacterial functional diversity until treatment of 1 U, but re-decreased it from treatment of 1.5 U. Principal components analysis indicated that there were intimate relationships among soil organic matter, nitrogen nutrient, microbial biomass, and respiration. Nevertheless, microbial diversity was related to soil moisture contents after urea application. We conclude here that the application of N fertilizer improved soil microbial biomass and respiratory activity. But, microbial diversity was reduced when excessive urea was applied in the tested paddy soil.

关 键 词:paddy soil intensive N application microbial properties microbial functional diversity red soil region 

分 类 号:S154.3[农业科学—土壤学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象