Evolution of strontium isotopic composition of sea-water from Late Permian to Early Triassic based on study of marine carbonates,Zhongliang Mountain,Chongqing,China  被引量:24

Evolution of strontium isotopic composition of sea-water from Late Permian to Early Triassic based on study of marine carbonates,Zhongliang Mountain,Chongqing,China

在线阅读下载全文

作  者:HUANG SiJing Qing HaiRuo HUANG PeiPei HU ZuoWei WANG QingDong ZOU MingLiang LIU HaoNian 

机构地区:[1]State Key Laboratory of Oil/Gas Reservoir Geology and Exploitation,Institute of Sedimentary Geology,Chengdu University of Technology,Chengdu 610059,China [2]Department of Geology,University of Regina,Regina S4S 0A2,Canada

出  处:《Science China Earth Sciences》2008年第4期528-539,共12页中国科学(地球科学英文版)

基  金:the National Natural Science Foundation of China (Grant No. 40472068, 40672072);the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20050616005)

摘  要:Collected from a Late Permian to Early Triassic sedimentary section in the Zhongliang Mountain of Chongqing, Southwest China, sixty marine carbonate samples were measured for the 87Sr/86Sr ratios, and corresponding evolution curve was constructed. The concentrations of SiO2, CaO, MgO, Mn and Sr are used to evaluate reservation of strontium isotopic composition for original seawater and the credi-bility of the dissolution method for sample preparation. The results show that most of the samples (except seven samples with the Mn/Sr ratios higher than 2) contain the original geochemistry signa-tures of ancient seawater. Compared to the published 87Sr/86Sr ratios from the Late Permian to Early Triassic, our database reported here is the largest and the curve constructed is the most complete. The strontium isotopic curve from Late Permian to Early Triassic is consistent globally and exhibits a gen-eral trend of steady increase during this period. The minimum of 87Sr/86Sr ratios (0.707011) occurs in the Late Permian (30 m in thickness below the Permian-Triassic boundary), and the maximum (0.708281), near the Early-Middle Triassic boundary. The lack of land plants and the rapid continental weathering result in the increase of 87Sr/86Sr ratios during the interval. The Permian-Triassic boundary in Zhongli-ang Mountain Section has been accepted internationally. The 87Sr/86Sr ratios of six samples near the boundary vary from 0.70714 to 0.70715 with an average of 0.70714, which is consistent with the value of 0.70715 (samples are from articulate brachiopod shells) from Korte et al. published in 2006 (within the error range in experiment). Accordingly, the strontium isotope composition in the Permian-Triassic boundary in this paper is of global significance. It can be confirmed that the 87Sr/86Sr ratios of the sea-water in the Permian-Triassic transition are in the range of 0.70714―0.70715.Collected from a Late Permian to Early Triassic sedimentary section in the Zhongliang Mountain of Chongqing, Southwest China, sixty marine carbonate samples were measured for the 87Sr/86Sr ratios, and corresponding evolution curve was constructed. The concentrations of SiO2, CaO, MgO, Mn and Sr are used to evaluate reservation of strontium isotopic composition for original seawater and the credibility of the dissolution method for sample preparation. The results show that most of the samples (except seven samples with the Mn/Sr ratios higher than 2) contain the original geochemistry signatures of ancient seawater. Compared to the published 87Sr/86Sr ratios from the Late Permian to Early Triassic, our database reported here is the largest and the curve constructed is the most complete. The strontium isotopic curve from Late Permian to Early Triassic is consistent globally and exhibits a general trend of steady increase during this period. The minimum of 87Sr/86Sr ratios (0.707011) occurs in the Late Permian (30 m in thickness below the Permian-Triassic boundary), and the maximum (0.708281), near the Early-Middle Triassic boundary. The lack of land plants and the rapid continental weathering result in the increase of 87Sr/86Sr ratios during the interval. The Permian-Triassic boundary in Zhongliang Mountain Section has been accepted internationally. The 87Sr/86Sr ratios of six samples near the boundary vary from 0.70714 to 0.70715 with an average of 0.70714, which is consistent with the value of 0.70715 (samples are from articulate brachiopod shells) from Korte et al. published in 2006 (within the error range in experiment). Accordingly, the strontium isotope composition in the Permian-Triassic boundary in this paper is of global significance. It can be confirmed that the 87Sr/86Sr ratios of the seawater in the Permian-Triassic transition are in the range of 0.70714–0.70715.

关 键 词:Zhongliang MOUNTAIN CHONGQING Late Permian-Early TRIASSIC paleoseawater strontium isotope composition 

分 类 号:P597[天文地球—地球化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象