机构地区:[1]Guizhou Institute of Metallurgy and Chemical Engineering,Guiyang 550002,China [2]School of Chemical Engineering,Guizhou University,Guiyang 550003,China [3]College of Chemistry and Chemistry Engineering,Graduate University of Chinese Academy of Sciences,Beijing 100049,China
出 处:《Science China Chemistry》2008年第9期823-828,共6页中国科学(化学英文版)
基 金:the Chinese 863 Project (Grant No. 2003AA32X230);Guizhou Provin-cial Governor Foundation (No. 200673);Guizhou Province Technological Break-throughs Fund (No.20073011) ;Guizhou High-Level Talent Foundation (No. TZJF-2007-57)
摘 要:Hexagonal Al-doped zinc oxide (ZnO) powders with a nominal composition of Zn1?x Al x O (0?x?0.028) were synthesized by the co-precipitation method. The contents of the Al element in the samples were measured by the inductively coupled plasma-optical emission spectroscopy (ICP-OES) technique. The structures of the Zn1?x Al x O (0?x?0.028) compounds calcined at 1000 and 1200°C have been determined using the Rietveld full-profile analysis method. Rietveld refinements of the diffraction data indicated that the addition of Al initially has a considerably positive effect on the decreasing of the lattice parameters a and c of Zn1?x Al x O, but the effect becomes very slight and even negative with the further increase of the Al content. The solid solubility limit of Al in ZnO (mole fraction y) is 2.2l%, resulting in Zn0.978Al0.22O. It seems that when the Al content is excessive, Al prefers to form a ZnAl2O4 compound with ZnO, but not to incorporate into the ZnO lattice to occupy the Zn2+ cites. Two phases, [ZnO] (or Al-doped ZnO) and [ZnAl2O4], are obviously segregated in Zn1?x Al x O while the value of x is larger than 0.024. The UV-Vis absorption spectra show that the Al-doped ZnO exhibits a red-shift in the absorption edge without reduced transmission compared with pure ZnO, which also confirms that Al ions enter the ZnO lattice and form a Zn1?x Al x O solid solution.Hexagonal Al-doped zinc oxide (ZnO) powders with a nominal composition of Zn1-xAlxO (0≤x≤0.028) were synthesized by the co-precipitation method. The contents of the Al element in the samples were measured by the inductively coupled plasma-optical emission spectroscopy (ICP-OES) technique. The structures of the Zn1-xAlxO (0≤x≤0.028) compounds calcined at 1000 and 1200℃ have been deter- mined using the Rietveld full-profile analysis method. Rietveld refinements of the diffraction data indi- cated that the addition of Al initially has a considerably positive effect on the decreasing of the lattice parameters a and c of Zn1-xAlxO, but the effect becomes very slight and even negative with the further increase of the Al content. The solid solubility limit of Al in ZnO (mole fraction y) is 2.2l%, resulting in Zn0.978Al0.22O. It seems that when the Al content is excessive, Al prefers to form a ZnAl2O4 compound with ZnO, but not to incorporate into the ZnO lattice to occupy the Zn2+ cites. Two phases, [ZnO] (or Al-doped ZnO) and [ZnAl2O4], are obviously segregated in Zn1-xAlxO while the value of x is larger than 0.024. The UV-Vis absorption spectra show that the Al-doped ZnO exhibits a red-shift in the absorption edge without reduced transmission compared with pure ZnO, which also confirms that Al ions enter the ZnO lattice and form a Zn1-xAlxO solid solution.
关 键 词:AL-DOPED ZINC OXIDE (ZnO) CO-PRECIPITATION method X-ray DIFFRACTION crystal structure
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...