检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:LIU ZhiChao CAI WenSheng SHAO XueGuang
出 处:《Science China Chemistry》2008年第8期751-759,共9页中国科学(化学英文版)
基 金:Supported by the National Natural Science Foundation of China (Grant Nos. 20575031 and 20775036);the Ph.D. Programs Foundation of Ministry of Education (MOE) of China (Grant No. 20050055001)
摘 要:An outlier detection method is proposed for near-infrared spectral analysis. The underlying philosophy of the method is that,in random test(Monte Carlo) cross-validation,the probability of outliers presenting in good models with smaller prediction residual error sum of squares(PRESS) or in bad models with larger PRESS should be obviously different from normal samples. The method builds a large number of PLS models by using random test cross-validation at first,then the models are sorted by the PRESS,and at last the outliers are recognized according to the accumulative probability of each sample in the sorted models. For validation of the proposed method,four data sets,including three published data sets and a large data set of tobacco lamina,were investigated. The proposed method was proved to be highly efficient and veracious compared with the conventional leave-one-out(LOO) cross validation method.An outlier detection method is proposed for near-infrared spectral analysis. The underlying philosophy of the method is that, in random test (Monte Carlo) cross-validation, the probability of outliers presenting in good models with smaller prediction residual error sum of squares (PRESS) or in bad models with larger PRESS should be obviously different from normal samples. The method builds a large number of PLS models by using random test cross-validation at first, then the models are sorted by the PRESS, and at last the outliers are recognized according to the accumulative probability of each sample in the sorted models. For validation of the proposed method, four data sets, including three published data sets and a large data set of tobacco lamina, were investigated. The proposed method was proved to be highly efficient and veracious compared with the conventional leave-one-out (LOO) cross validation method.
关 键 词:NEAR-INFRARED spectrum partial least squares(PLS) MONTE Carlo cross validation OUTLIER detection
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222