Giant enhancement of magnetocaloric effect in metallic glass matrix composite  被引量:5

Giant enhancement of magnetocaloric effect in metallic glass matrix composite

在线阅读下载全文

作  者:WANG YongTian BAI HaiYang PAN MingXiang ZHAO DeQian WANG WeiHua 

机构地区:[1]Institute of Physics,Chinese Academy of Sciences,Beijing 100080,China

出  处:《Science China(Physics,Mechanics & Astronomy)》2008年第4期337-348,共12页中国科学:物理学、力学、天文学(英文版)

基  金:the National Natural Science Foundation of China (Grant Nos. 50621061 and 50731008);the National Basic Research Program of China (973 Program) (Grant No. 2007CB613904)

摘  要:The magnetocaloric effect (MCE) has made great success in very low temperature refrigeration, which is highly desirable for application to the extended higher tem-perature range. Here we report the giant enhancement of MCE in the metallic glass composite. The large magnetic refrigerant capacity (RC) up to 103 J·kg-1 is more than double the RC of the well-known crystalline magnetic refrigerant compound Gd5Si2Ge1.9Fe0.1 (357 J·kg-1) and MnFeP0.45As0.55 (390 J·kg-1)(containing either ex-orbitant-cost Ge or poisonous As). The full width at half maximum of the magnetic entropy change (ΔSm) peak almost spreads over the whole low-temperature range (from 303 to 30 K), which is five times wider than that of the Gd5Si2Ge1.9Fe0.1 and pure Gd. The maximum ΔSm approaches a nearly constant value in a wide tem-perature span over 100 K, and however, such a broad table-like region near room temperature has seldom been found in alloys and compounds. In combination with the intrinsic amorphous nature, the metallic glass composite may be potential for the ideal Ericsson-cycle magnetic refrigeration over a broad temperature range near room temperature.The magnetocaloric effect (MCE) has made great success in very low temperature refrigeration, which is highly desirable for application to the extended higher tem-perature range. Here we report the giant enhancement of MCE in the metallic glass composite. The large magnetic refrigerant capacity (RC) up to 103 J·kg-1 is more than double the RC of the well-known crystalline magnetic refrigerant compound Gd5Si2Ge1.9Fe0.1 (357 J·kg-1) and MnFeP0.45As0.55 (390 J·kg-1)(containing either ex-orbitant-cost Ge or poisonous As). The full width at half maximum of the magnetic entropy change (ΔSm) peak almost spreads over the whole low-temperature range (from 303 to 30 K), which is five times wider than that of the Gd5Si2Ge1.9Fe0.1 and pure Gd. The maximum ΔSm approaches a nearly constant value in a wide tem-perature span over 100 K, and however, such a broad table-like region near room temperature has seldom been found in alloys and compounds. In combination with the intrinsic amorphous nature, the metallic glass composite may be potential for the ideal Ericsson-cycle magnetic refrigeration over a broad temperature range near room temperature.

关 键 词:METALLIC GLASS MAGNETOCALORIC effect COMPOSITE 

分 类 号:O482[理学—固体物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象