机构地区:[1]State Key Laboratory of Earthquake Dynamics,Institute of Geology,China Earthquake Administration,Beijing 100029,China [2]School of Earth and Space Sciences,University of Science and Technology of China,Hefei 230026,China [3]Institute of Earthquake Science,China Earthquake Administration,Beijing 100036,China [4]Institute of Seismology,China Earthquake Administration,Wuhan 430071,China [5]Survey Engineering Institute of Earthquake Administration of Sichuan Province,Ya’an 625000,China
出 处:《Science China Earth Sciences》2008年第9期1267-1283,共17页中国科学(地球科学英文版)
基 金:the National Basic Research Program of China (Grant No. 2004CB418403);the Key Program of the National Natural Science Foundation of China (Grant No. 40334042);the China Earthquake Administration Research Fund (Grant No. 200708002)
摘 要:A linked-fault-element model is employed to invert for contemporary slip rates along major active faults in the Sichuan-Yunnan region (96°-108°E, 21°-35°N) using the least squares method. The model is based on known fault geometry, and constrained by a GPS-derived horizontal velocity field. Our results support a model attributing the eastward extrusion of the Tibetan Plateau driven mainly by the north-northeastward indentation of the Indian plate into Tibet and the gravitational collapse of the plateau. Resisted by a relatively stable south China block, materials of the Sichuan-Yunnan region rotate clockwise around the eastern Himalayan tectonic syntaxis. During the process the Garzê-Yushu, Xianshuihe, Anninghe, Zemuhe, Daliangshan, and Xiaojiang faults, the southwest extension of the Xiaojiang fault, and the Daluo-Jinghong and Mae Chan faults constitute the northeast and east boundaries of the eastward extrusion, with their left slip rates being 0.3-14.7, 8.9-17.1, 5.1 ± 2.5, 2.8 ± 2.3, 7.1 ± 2.1, 9.4 ± 1.2, 10.1 ± 2.0, 7.3 ± 2.6, and 4.9 ± 3.0 mm/a respectively. The southwestern boundary consists of a widely distributed dextral transpressional zone other than a single fault. Right slip rates of 4.2 ± 1.3, 4.3 ± 1.1, and 8.5 ± 1.7 mm/a are detected across the Nanhua-Chuxiong-Jianshui, Wuliangshan, and Longling-Lancang faults. Crustal deformation across the Longmenshan fault is weak, with short-ening rates of 1.4 ± 1.0 and 1.6 ± 1.3 mm/a across the Baoxing-Beichuan and Beichuan-Qingchuan segments. Northwest of the Longmenshan fault lies an active deformation zone (the Longriba fault) with 5.1±1.2 mm/a right slip across. Relatively large slip rates are detected across a few faults within the Sichuan-Yunnan block: 4.4±1.3 mm/a left slip and 2.7±1.1 mm/a shortening across the Litang fault, and 2.7±2.3 mm/a right-lateral shearing and 6.7±2.3 mm/a shortening across the Yunongxi fault and its surrounding regions. In conclusion, we find that the Sichuan-Yunnan region is divided into more than a dozA linked-fault-element model is employed to invert for contemporary slip rates along major active faults in the Sichuan-Yunnan region (96°–108°E, 21°–35°N) using the least squares method. The model is based on known fault geometry, and constrained by a GPS-derived horizontal velocity field. Our results support a model attributing the eastward extrusion of the Tibetan Plateau driven mainly by the north-northeastward indentation of the Indian plate into Tibet and the gravitational collapse of the plateau. Resisted by a relatively stable south China block, materials of the Sichuan-Yunnan region rotate clockwise around the eastern Himalayan tectonic syntaxis. During the process the Garzê-Yushu, Xianshuihe, Anninghe, Zemuhe, Daliangshan, and Xiaojiang faults, the southwest extension of the Xiaojiang fault, and the Daluo-Jinghong and Mae Chan faults constitute the northeast and east boundaries of the eastward extrusion, with their left slip rates being 0.3–14.7, 8.9–17.1, 5.1 ± 2.5, 2.8 ± 2.3, 7.1 ± 2.1, 9.4 ± 1.2, 10.1 ± 2.0, 7.3 ± 2.6, and 4.9 ± 3.0 mm/a respectively. The southwestern boundary consists of a widely distributed dextral transpressional zone other than a single fault. Right slip rates of 4.2 ± 1.3, 4.3 ± 1.1, and 8.5 ± 1.7 mm/a are detected across the Nanhua-Chuxiong-Jianshui, Wuliangshan, and Longling-Lancang faults. Crustal deformation across the Longmenshan fault is weak, with shortening rates of 1.4 ± 1.0 and 1.6 ± 1.3 mm/a across the Baoxing-Beichuan and Beichuan-Qingchuan segments. Northwest of the Longmenshan fault lies an active deformation zone (the Longriba fault) with 5.1±1.2 mm/a right slip across. Relatively large slip rates are detected across a few faults within the Sichuan-Yunnan block: 4.4±1.3 mm/a left slip and 2.7±1.1 mm/a shortening across the Litang fault, and 2.7±2.3 mm/a right-lateral shearing and 6.7±2.3 mm/a shortening across the Yunongxi fault and its surrounding regions. In conclusion, we find that the Sichuan-Yunnan region is divided into more tha
关 键 词:Sichuan-Yunnan region GPS linked-fault-element SLIP rate
分 类 号:P542[天文地球—构造地质学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...