Numerical study on ULF waves in a dipole field excited by sudden impulse  被引量:12

Numerical study on ULF waves in a dipole field excited by sudden impulse

在线阅读下载全文

作  者:YANG Biao FU SuiYan ZONG QiuGang WANG YongFu ZHOU XuZhi PU ZuYin XIE Lun 

机构地区:[1]Institute of Space Physics and Applied Technology,Peking University,Beijing 100871,China [2]Center for Atmospheric Research,University of Massachusetts Lowell,Lowell,MA 01854-3629,USA

出  处:《Science China(Technological Sciences)》2008年第10期1665-1676,共12页中国科学(技术科学英文版)

基  金:the National Natural Science Foundation of China (Grant Nos. 40425004 and 40528005);the Major State Basic Research De-velopment Program of China (973 Program) (Grant No. 2006CB806305)

摘  要:A three-dimensional numerical model is employed to investigate ULF waves ex-cited by the sudden impulse (SI) of the solar wind dynamic pressure interacting with a dipole magnetosphere. We focus on the solar wind-magnetosphere energy coupling through ULF waves, and the influences of the SI spectrum on the cavity mode structure and the energy deposition due to field line resonances (FLRs) in the magnetosphere. The numerical results show that for a given SI lasting for 1 min with amplitude of 50 mV/m impinging on the subsolar magnetopause, the total ULF energy transported from the solar wind to the magnetosphere is about the magni-tude of 1014 J. The efficiency of the solar wind energy input is around 1%, which depends little on the location of the magnetopause in the model. It is also found that the energy of the cavity mode is confined in the region near the magnetopause, whereas, the energy of the toroidal mode may be distributed among a few specific L-shells. With a given size of the model magnetosphere and plasma density distri-bution, it is shown that the fundamental eigenfrequency of the cavity mode and the central locations of the FLRs do not vary noticeably with the power spectrum of the SI. It is worth noting that the spectrum of the SI affects the excitation of higher harmonics of the global cavity mode. The broader the bandwidth of the SI is, the higher harmonics of cavity mode could be excited. Meanwhile, the corresponding FLRs regions are broadened at the same time, which implies that the global cavity modes and toroidal modes can resonate on more magnetic L-shells when more harmonics of the global cavity modes appear.A three-dimensional numerical model is employed to investigate ULF waves excited by the sudden impulse (SI) of the solar wind dynamic pressure interacting with a dipole magnetosphere. We focus on the solar wind-magnetosphere energy coupling through ULF waves, and the influences of the SI spectrum on the cavity mode structure and the energy deposition due to field line resonances (FLRs) in the magnetosphere. The numerical results show that for a given SI lasting for 1 min with amplitude of 50 mV/m impinging on the subsolar magnetopause, the total ULF energy transported from the solar wind to the magnetosphere is about the magnitude of 1014 J. The efficiency of the solar wind energy input is around 1%, which depends little on the location of the magnetopause in the model. It is also found that the energy of the cavity mode is confined in the region near the magnetopause, whereas, the energy of the toroidal mode may be distributed among a few specific L-shells. With a given size of the model magnetosphere and plasma density distribution, it is shown that the fundamental eigenfrequency of the cavity mode and the central locations of the FLRs do not vary noticeably with the power spectrum of the SI. It is worth noting that the spectrum of the SI affects the excitation of higher harmonics of the global cavity mode. The broader the bandwidth of the SI is, the higher harmonics of cavity mode could be excited. Meanwhile, the corresponding FLRs regions are broadened at the same time, which implies that the global cavity modes and toroidal modes can resonate on more magnetic L-shells when more harmonics of the global cavity modes appear.

关 键 词:SUDDEN impulse ULF waves global cavity MODE TOROIDAL MODE FIELD line RESONANCES 

分 类 号:P353[天文地球—空间物理学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象