检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《Acta Mathematicae Applicatae Sinica》2002年第3期461-470,共10页应用数学学报(英文版)
基 金:the National Natural Science Foundation of China (No.19531060).
摘 要: In this paper, using capacity theory and extension theorem of Lipschitz functions we first discuss the uniqueness of weak solution of nonhomogeneous quasilinear elliptic equationsin space W(θ,p)(Ω), which is bigger than W1,p(Ω). Next, using revise reverse Holder inequality we prove that if ωc is uniformly p-think, then there exists a neighborhood U of p, such that for all t ∈U, the weak solutions of equation corresponding t are bounded uniformly. Finally, we get the stability of weak solutions on exponent p.In this paper, using capacity theory and extension theorem of Lipschitz functions we first discuss the uniqueness of weak solution of nonhomogeneous quasilinear elliptic equationsin space W(θ,p)(Ω), which is bigger than W1,p(Ω). Next, using revise reverse Holder inequality we prove that if ωc is uniformly p-think, then there exists a neighborhood U of p, such that for all t ∈U, the weak solutions of equation corresponding t are bounded uniformly. Finally, we get the stability of weak solutions on exponent p.
关 键 词:Nonhoraogeneous quasilinear elliptic equations capacity STABILITY
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229