BIFURCATIONS TO A HETEROCLINIC MANIFOLD WITH NONHYPERBOLIC EQUILIBRIA IN R^n  被引量:1

BIFURCATIONS TO A HETEROCLINIC MANIFOLD WITH NONHYPERBOLIC EQUILIBRIA IN R^n

作  者:孙建华 

出  处:《Acta Mathematica Scientia》1998年第3期293-302,共10页数学物理学报(B辑英文版)

摘  要:The authors study bifurcations from a heteroclinic manifold connecting two non-hyperbolic equilibrium P-0 and P-1 for a n-dimensional dynamical system. They show that under some assumptions, each equilibrium P-i splits into two equilibria <(P)over tilde (i)> and P-i(alpha), i = 0, 1, and find the Melnikov vector conditions assuring the existence of a heteroclinic orbit from P-1(alpha) to P-0(alpha) along directions that are tangent to the strong unstable (resp.strong stable) manifold of P-1(alpha) (resp.P-0(alpha)). The exponential trichotomy and the unified and geometrical method are used to prove their results.The authors study bifurcations from a heteroclinic manifold connecting two non-hyperbolic equilibrium P-0 and P-1 for a n-dimensional dynamical system. They show that under some assumptions, each equilibrium P-i splits into two equilibria <(P)over tilde (i)> and P-i(alpha), i = 0, 1, and find the Melnikov vector conditions assuring the existence of a heteroclinic orbit from P-1(alpha) to P-0(alpha) along directions that are tangent to the strong unstable (resp.strong stable) manifold of P-1(alpha) (resp.P-0(alpha)). The exponential trichotomy and the unified and geometrical method are used to prove their results.

关 键 词:nonhyperbolic equilibrium heteroclinic manifold exponential trichotomy Melnikov vector 

分 类 号:O19[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象