Hausdorff dimension of chaotic sets of interval self-maps  

Hausdorff dimension of chaotic sets of interval self-maps

在线阅读下载全文

作  者:顾荣宝 

机构地区:[1]Department of Mathematics, Anhui University, Hefei 230039, China

出  处:《Chinese Science Bulletin》1996年第21期1761-1764,共4页

基  金:Project supported by the Youth Science Foundation of Anhui University.

摘  要:Let I be the interval [0,1].We denote by (I) the space of all continuous mapsfrom I into itself with the C^0 topology,i.e.the topology induced by the metric ρ(f,g) =sup{|f(x)-g(x)||x∈I}. Let f∈(I).A subset C of I is said to be Li-Yorke chaotic in respect to f if forany two points x,y∈C with x≠y,

关 键 词:INTERVAL self-map CHAOTIC SET HausdorfT dimension. 

分 类 号:O157.5[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象