INADMISSIBILITY AND ADMISSIBILITY RESULTS FOR UNBIASED LOSS ESTIMATORS BASED ON GAUSS-MARKOV ESTIMATORS  

INADMISSIBILITY AND ADMISSIBILITY RESULTS FOR UNBIASED LOSS ESTIMATORS BASED ON GAUSS-MARKOV ESTIMATORS

在线阅读下载全文

作  者:吴启光 

机构地区:[1]Institute of Systems Science, Academia Sinica, Beijing 100080, China

出  处:《Acta Mathematicae Applicatae Sinica》1993年第3期281-288,共8页应用数学学报(英文版)

基  金:This project is supported by the National Natural Science Foundation of China

摘  要:Let Y be distributed according to an n-variate normal distribution with a mean Xβ and a nonsingular covariance matrix σ~2V,where both X and V are known,β∈R^p is a parameter,σ>0 is known or unknown.Denote β=(X'V-~1X)-X'V-~1Y and S^2=(Y-Xβ)'V^(-1)(Y-Xβ).Assume that Eβ is linearly estimable.When σ is known,it is proved that the unbiased loss estimator σ~2tr(F(X'V-~1X)-F')of(Fβ-Fβ)'(Fβ-Fβ)is admissible for rank (F)=k≤4 and inadmissible for k≥5 with the squared error loss[a-(Fβ-Fβ)'(Fβ-Fβ)]~2 When σ is unknown and rank (X)<n,it is established that the loss estimator cS^2,where c is any nonnegative constant,of(Fβ-Fβ)'(Fβ-Fβ)is inadmissible and that the unbiased loss estimator tr(F(X'V^(-1)X)-F')ofσ^(-2)(Fβ-Fβ)'(Fβ-Fβ)is admissible for k≤4,and inadmissible for k≥5 with squared error loss.Let Y be distributed according to an n-variate normal distribution with a mean Xβ and a nonsingular covariance matrix σ~2V,where both X and V are known,β∈R^p is a parameter,σ>0 is known or unknown.Denote β=(X'V-~1X)-X'V-~1Y and S^2=(Y-Xβ)'V^(-1)(Y-Xβ).Assume that Eβ is linearly estimable.When σ is known,it is proved that the unbiased loss estimator σ~2tr(F(X'V-~1X)-F')of(Fβ-Fβ)'(Fβ-Fβ)is admissible for rank (F)=k≤4 and inadmissible for k≥5 with the squared error loss[a-(Fβ-Fβ)'(Fβ-Fβ)]~2 When σ is unknown and rank (X)<n,it is established that the loss estimator cS^2,where c is any nonnegative constant,of(Fβ-Fβ)'(Fβ-Fβ)is inadmissible and that the unbiased loss estimator tr(F(X'V^(-1)X)-F')ofσ^(-2)(Fβ-Fβ)'(Fβ-Fβ)is admissible for k≤4,and inadmissible for k≥5 with squared error loss.

分 类 号:O1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象