检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]Department of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PRC
出 处:《Science China Chemistry》1993年第12期1443-1450,共8页中国科学(化学英文版)
基 金:Project supported by the National Natural Science Foundation of China.
摘 要:The artificial neural network (ANN) model with back-propagation of error is used to study the quantitative structure-activity relationship of para-substituted phenol derivatives between the biological activity and the physicochemical property parameters. Network parameters are optimized, and an empirical rule for dynamically adjusting the network’s learning rate is proposed to improve the network’s performance. The results showthat the three-layer ANN model gives satisfactory performance, with f(x)=1/(1+exp(-x)) as the network node’s input-output transformation function and the number of hidden nodes 10. The network gives the mean square error (rose) of 0.036 when predicting the biological activity of 26 para-substituted phenol derivatives. This result compares favourably with that obtained by the conventional methods.The artificial neural network (ANN) model with back-propagation of error is used to study the quantitative structure-activity relationship of para-substituted phenol derivatives between the biological activity and the physicochemical property parameters. Network parameters are optimized, and an empirical rule for dynamically adjusting the network's learning rate is proposed to improve the network's performance. The results showthat the three-layer ANN model gives satisfactory performance, with f(x)=1/(1+exp(-x)) as the network node's input-output transformation function and the number of hidden nodes 10. The network gives the mean square error (rose) of 0.036 when predicting the biological activity of 26 para-substituted phenol derivatives. This result compares favourably with that obtained by the conventional methods.
关 键 词:artifieial neural network QUANTITATIVE STRUCTURE-ACTIVITY relationship para-substituted phenols.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38