Artificial Neural Networks Applied to the Quantitative Structure-Activity Relationship Study of Para-substituted Phenols  被引量:3

Artificial Neural Networks Applied to the Quantitative Structure-Activity Relationship Study of Para-substituted Phenols

在线阅读下载全文

作  者:宋新华 陈茁 俞汝勤 

机构地区:[1]Department of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PRC

出  处:《Science China Chemistry》1993年第12期1443-1450,共8页中国科学(化学英文版)

基  金:Project supported by the National Natural Science Foundation of China.

摘  要:The artificial neural network (ANN) model with back-propagation of error is used to study the quantitative structure-activity relationship of para-substituted phenol derivatives between the biological activity and the physicochemical property parameters. Network parameters are optimized, and an empirical rule for dynamically adjusting the network’s learning rate is proposed to improve the network’s performance. The results showthat the three-layer ANN model gives satisfactory performance, with f(x)=1/(1+exp(-x)) as the network node’s input-output transformation function and the number of hidden nodes 10. The network gives the mean square error (rose) of 0.036 when predicting the biological activity of 26 para-substituted phenol derivatives. This result compares favourably with that obtained by the conventional methods.The artificial neural network (ANN) model with back-propagation of error is used to study the quantitative structure-activity relationship of para-substituted phenol derivatives between the biological activity and the physicochemical property parameters. Network parameters are optimized, and an empirical rule for dynamically adjusting the network's learning rate is proposed to improve the network's performance. The results showthat the three-layer ANN model gives satisfactory performance, with f(x)=1/(1+exp(-x)) as the network node's input-output transformation function and the number of hidden nodes 10. The network gives the mean square error (rose) of 0.036 when predicting the biological activity of 26 para-substituted phenol derivatives. This result compares favourably with that obtained by the conventional methods.

关 键 词:artifieial neural network QUANTITATIVE STRUCTURE-ACTIVITY relationship para-substituted phenols. 

分 类 号:O6[理学—化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象