Limit Theorems for Chaitin Complexity  

Limit Theorems for Chaitin Complexity

在线阅读下载全文

作  者:杨恩辉 

机构地区:[1]Department of Mathematics, Nankai University, Tianjin 300071, PRC

出  处:《Chinese Science Bulletin》1993年第5期361-365,共5页

摘  要:1 Statement of Limit Theorems Let A={a<sub>1</sub>,…, a<sub>|A|</sub>} be a finite alphabet, B={0, 1}, and N={0, 1,…}. By A<sup>n</sup>(A<sup>∞</sup>, resp.), we denote the set of words with the length n(∞, resp.) from the alphabet A; let A<sup>*</sup>= A<sup>n</sup>. B<sup>n</sup>, B<sup>∞</sup> and B<sup>*</sup> are defined similarly. A<sup>n</sup>(A<sup>∞</sup>, resp.) is also considered to be the n-fold (infinite, resp.) Cartesian product of A. If x=(x<sub>i</sub>) is a finite or infinite<正> 1 Statement of Limit Theorems Let A={a1,…, a|A|} be a finite alphabet, B={0, 1}, and N={0, 1,…}. By An(A∞, resp.), we denote the set of words with the length n(∞, resp.) from the alphabet A; let A*= An. Bn, B∞and B*are defined similarly. An(A∞, resp.) is also considered to be the n-fold (infinite, resp.) Cartesian product of A. If x=(xi) is a finite or infinite sequence

关 键 词:Chaitin complesity Shamon ENTROPY RATE of SOURCES UNIVERSAL noiseless coding. 

分 类 号:N[自然科学总论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象