检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华南理工大学电子与信息学院,广州510640
出 处:《中国图象图形学报》2011年第12期2133-2139,共7页Journal of Image and Graphics
基 金:国家自然科学基金项目(60972135);中央高校基本科研业务费专项资金项目(2009ZM0231);广东省自然科学基金项目(06025642)
摘 要:基于结构相似度的图像质量评价方法简单高效、准确性较高,但是对严重失真和交叉失真类型评价不够准确。考虑到边缘是图像的主要信息和能量成分,人眼对边缘信息的丢失更加关注,提出一种重视边缘区域的结构相似度图像质量评价方法(HESSIM),采用动态阈值(Otsu)法提取边缘区域,结合JND确定边缘区域的明显失真,并对其予以重视。实验结果表明,HESSIM比SSIM有更准确的评价,特别是对模糊类失真和噪声类失真的评价,HESSIM的优越性更加明显。Structural similarity (SSIM) is an image quality assessment algorithm with the advantage of simplicity, high efficiency and better consistency with human subjectivity. However, it often fails when measuring badly distorted or cross distortion images. In this paper, an improved algorithm called structural similarity highlighting edge regions (HESSIM) is proposed based on the idea that edges are the most important information in an image. The humans eye is very sensible for distorted edge information. In the proposed HESSIM, the edge regions are first divided from an image by Otsu' s method, then those with obviously perceptual distortion are chosen by the JND model, and their distortion measures are highlighted. Experimental results show that HESSIM is more consistent with HVS than SSIM, especially for distorted images which are blurred or comtaminated with white noise.
分 类 号:TN911.73[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.46