Part-based on-road vehicle detection using hidden random field  

Part-based on-road vehicle detection using hidden random field

在线阅读下载全文

作  者:ZHANG XueTao HE YongJian WANG Fei 

机构地区:[1]Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, Xi'an 710049, China [2]Xi'an Communication Institute, Xi'an 710049, China

出  处:《Science China(Information Sciences)》2011年第12期2522-2529,共8页中国科学(信息科学)(英文版)

基  金:supported partly by the National Natural Science Foundation of China(Grant No.90920301)

摘  要:This paper addresses the problem of detecting on-road vehicles in still images captured by the on-board cameras. We model this as a labelling inference procedure and incorporate the part-based representation of the rear-ends of vehicle within a hidden random field based probabilistic model. Representing objects with parts inherently good for dealing with occlusions. In the proposed model, the part labels form a hidden layer in the graphical model. Our approaches can automatically find the latent parts without explicit indication during training. The experiment is performed on the database with real images with a promising result.

关 键 词:vehicle detection hidden random field part-based model 

分 类 号:TP316.7[自动化与计算机技术—计算机软件与理论] U469.3[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象