机构地区:[1]School of Mathematics and Physics, Shanghai University of Electric Power [2]Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University
出 处:《Applied Mathematics and Mechanics(English Edition)》2011年第12期1565-1576,共12页应用数学和力学(英文版)
基 金:supported by the National Natural Science Foundation of China(No.10802046)
摘 要:A high-order upwind scheme has been developed to capture the vortex wake of a helicopter rotor in the hover based on chimera grids. In this paper, an improved fifth-order weighted essentially non-oscillatory (WENO) scheme is adopted to interpolate the higher-order left and right states across a cell interface with the Roe Riemann solver updating inviscid flux, and is compared with the monotone upwind scheme for scalar conservation laws (MUSCL). For profitably capturing the wake and enforcing the period boundary condition, the computation regions of flows are discretized by using the struc- tured chimera grids composed of a fine rotor grid and a cylindrical background grid. In the background grid, the mesh cells located in the wake regions are refined after the so- lution reaches the approximate convergence. Considering the interpolation characteristic of the WENO scheme, three layers of the hole boundary and the interpolation boundary are searched. The performance of the schemes is investigated in a transonic flow and a subsonic flow around the hovering rotor. The results reveal that the present approach has great capabilities in capturing the vortex wake with high resolution, and the WENO scheme has much lower numerical dissipation in comparison with the MUSCL scheme.A high-order upwind scheme has been developed to capture the vortex wake of a helicopter rotor in the hover based on chimera grids. In this paper, an improved fifth-order weighted essentially non-oscillatory (WENO) scheme is adopted to interpolate the higher-order left and right states across a cell interface with the Roe Riemann solver updating inviscid flux, and is compared with the monotone upwind scheme for scalar conservation laws (MUSCL). For profitably capturing the wake and enforcing the period boundary condition, the computation regions of flows are discretized by using the struc- tured chimera grids composed of a fine rotor grid and a cylindrical background grid. In the background grid, the mesh cells located in the wake regions are refined after the so- lution reaches the approximate convergence. Considering the interpolation characteristic of the WENO scheme, three layers of the hole boundary and the interpolation boundary are searched. The performance of the schemes is investigated in a transonic flow and a subsonic flow around the hovering rotor. The results reveal that the present approach has great capabilities in capturing the vortex wake with high resolution, and the WENO scheme has much lower numerical dissipation in comparison with the MUSCL scheme.
关 键 词:hovering rotor vortex wake Navier-Stokes equation chimera grid weightedessentially non-oscillatory (WENO) scheme
分 类 号:V212.4[航空宇航科学与技术—航空宇航推进理论与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...