检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《情报理论与实践》2011年第12期1-4,共4页Information Studies:Theory & Application
基 金:国家自然科学基金项目"基于句子匹配分析的知识抽取研究与实现"的研究成果之一;项目编号:70803048
摘 要:通过比较句子级知识抽取与词语级知识抽取的差异性,分析句子级知识抽取在情报学中的意义,表现在四类典型应用系统:学术抄袭检测系统、参考文献自动标注系统、文献自动综述系统、知识库构建系统。分析了知识抽取的难点与关键技术,针对难点与关键技术提出了知识抽取的3个转向:抽取对象转向以学术文献为主;抽取技术转向以内容结构分析为主;抽取目标转向以构建知识元数据库为主。Based on the comparison of the differences between sentence-level knowledge extraction and word- level knowledge extraction, this paper analyzes the significance of the sentence-level knowledge extraction in information science. It's represented in the 4 typical application systems : academic plagiarism detection system, automatic reference-labeling system, automatic literature summarizing system and knowledge base construction system. After analyzing the difficulties and key technologies of knowledge extraction, this paper proposes 3 shifts of knowledge extraction in accordance with the difficulties and key technologies : extraction object shifts to giving priority to academic literature; extraction technology shifts to giving priority to content structure analysis; and extraction objective shifts to giving priority to constructing knowledge metadata base.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7