L_(p,q)-norm estimates associated with Burkholder’s inequalities  被引量:1

L_(p,q)-norm estimates associated with Burkholder's inequalities

在线阅读下载全文

作  者:jIAO Yong 

机构地区:[1]School of Mathematics Science and Computing Technology, Central South University, Changsha 410075, China

出  处:《Science China Mathematics》2011年第12期2713-2721,共9页中国科学:数学(英文版)

基  金:supported by National Natural ScienceFoundation of China (Grant Nos. 11001273, 90820302);the Fundamental Research Funds for the Central Univer-sities (Grant No. 2010QYZD001);Research Fund for the Doctoral Program of Higher Education of China (GrantNo. 20100162120035) ;Postdoctoral Science Foundation of Central South University

摘  要:We prove Burkholder's inequalities in the frame of Lorentz spaces Lp,q(Ω), 1 < p < ∞, 1 < q < ∞. As application, we obtain the Lp,q-norm estimates on Rosenthal's inequalities. These estimates generalize the classical Rosenthal's inequalities.We prove Burkholder's inequalities in the frame of Lorentz spaces LP,q(Ω), 1 〈 p 〈 ∞, 1 〈 q 〈 ∞. As application, we obtain the Lp,q-norm estimates on Rosenthal's inequalities. These estimates generalize the classical Rosenthal's inequalities.

关 键 词:Lorentz spaces MARTINGALES Burkholder's inequalities Rosenthal's inequalities 

分 类 号:O212.1[理学—概率论与数理统计] O177.6[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象