检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]上海大学力学系上海市力学在能源工程中的应用重点实验室,上海200444 [2]大连民族学院理学院,大连116600
出 处:《力学学报》2011年第6期1110-1116,共7页Chinese Journal of Theoretical and Applied Mechanics
基 金:国家自然科学基金(10772014;10872045);上海市教委科研创新项目(09YZ12);上海市重点学科建设(S20106);教育部优秀人才支持计划(NCET-09-096)资助项目~~
摘 要:应用连续介质力学有限变形理论建立受内压作用不可压超弹性球壳大变形问题的力学模型,且运用基于变形梯度张量极分解的弹性体积生长理论分析生长对不可压超弹性球壳变形和稳定性的影响.通过对球壳变形与内压关系式的数值计算得到不同生长条件下球壳的变形曲线和应力分布曲线及由生长引起的残余变形和残余应力分布.计算结果表明生长对球壳变形特性有明显的影响,生长影响球壳可产生不稳定变形的临界壁厚和临界内压,且在某些情况下可改变球壳的稳定性.生长在球壳中可产生一定的残余变形和残余应力,对球壳中的应力分布有一定的影响.另外当生长的程度足够大时,即便没有外力作用,球壳仅在生长引起的残余应力作用下也可产生不稳定变形.A mechanical model for the large deformation analysis of an incompressible hyper-elastic spherical shell subjected to the inner pressure is established within the framework of the finite elasticity theory of continuum mechanics. The effect of growth on the deformation and the stability of the shell are examined with the elastic model for volumetric growth based on multiplicative decomposition of the deformation gradient. The deformation curves and the distribution of stresses, the residual strain and the distribution of residual stresses due to growth are given by numerical computation of the relation between the deformation and the inner pressure. It is shown that the effect of growth on the deformation of the shell is obvious. The critical thickness and the critical pressure for the shell to take an unstable deformation are affected by growth, and the stability of the shell may be changed by growth in some cases. Residual deformation and residual stresses can be developed in the shell by growth, and the distribution of stresses also affected by growth. Furthermore, unstable deformation may be rendered only by the residual stress induced by a sufficiently large growth even in the absence of the external loading.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28