机构地区:[1]Center of Data Assimilation for Research and Application, Nanjing University of Information Science & Technology [2]School of Remote Sensing, Nanjing University of Information Science & Technology [3]NOAA/NESDIS/Center for Satellite Application and Research, Camp Springs, MD 20746, USA
出 处:《Acta meteorologica Sinica》2011年第5期669-681,共13页
基 金:Supported by the National Key Basic Research and Development (973) Program of China(2010CB951600);National Natural Science Foundation of China(40875015,40875016,and40975019);Special Fund for University Doctoral Students of China(20060300002);Chinese Academy of Meteorological Sciences"Application of Meteorological Data in GRAPES-3DVar" Program;NOAA/NESDIS/Center for Satellite Applications and Research (STAR) CalVal Program
摘 要:Radio-frequency interference (RFI) affects greatly the quality of the data and retrieval products from space-borne microwave radiometry. Analysis of the Advanced Microwave Scanning Radiometer on the Earth Observing System (AMSR-E) Aqua satellite observations reveals very strong and widespread RFI contam- inations on the C- and X-band data. Fortunately, the strong and moderate RFI signals can be easily identified using an index on observed brightness temperature spectrum. It is the weak RFI that is diffi- cult to be separated from the nature surface emission. In this study, a new algorithm is proposed for RFI detection and correction. The simulated brightness temperature is used as a background signal (B) and a departure of the observation from the background (O–B) is utilized for detection of RFI. It is found that the O–B departure can result from either a natural event (e.g., precipitation or flooding) or an RFI signal. A separation between the nature event and RFI is further realized based on the scattering index (SI). A positive SI index and low brightness temperatures at high frequencies indicate precipitation. In the RFI correction, a relationship between AMSR-E measurements at 10.65 GHz and those at 18.7 or 6.925 GHz is first developed using the AMSR-E training data sets under RFI-free conditions. Contamination of AMSR-E measurements at 10.65 GHz is then predicted from the RFI-free measurements at 18.7 or 6.925 GHz using this relationship. It is shown that AMSR-E measurements with the RFI-correction algorithm have better agreement with simulations in a variety of surface conditions.Radio-frequency interference (RFI) affects greatly the quality of the data and retrieval products from space-borne microwave radiometry. Analysis of the Advanced Microwave Scanning Radiometer on the Earth Observing System (AMSR-E) Aqua satellite observations reveals very strong and widespread RFI contam- inations on the C- and X-band data. Fortunately, the strong and moderate RFI signals can be easily identified using an index on observed brightness temperature spectrum. It is the weak RFI that is diffi- cult to be separated from the nature surface emission. In this study, a new algorithm is proposed for RFI detection and correction. The simulated brightness temperature is used as a background signal (B) and a departure of the observation from the background (O–B) is utilized for detection of RFI. It is found that the O–B departure can result from either a natural event (e.g., precipitation or flooding) or an RFI signal. A separation between the nature event and RFI is further realized based on the scattering index (SI). A positive SI index and low brightness temperatures at high frequencies indicate precipitation. In the RFI correction, a relationship between AMSR-E measurements at 10.65 GHz and those at 18.7 or 6.925 GHz is first developed using the AMSR-E training data sets under RFI-free conditions. Contamination of AMSR-E measurements at 10.65 GHz is then predicted from the RFI-free measurements at 18.7 or 6.925 GHz using this relationship. It is shown that AMSR-E measurements with the RFI-correction algorithm have better agreement with simulations in a variety of surface conditions.
关 键 词:radio-frequency interference (RFI) RFI index RFI detection
分 类 号:P414.4[天文地球—大气科学及气象学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...