检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国科学院声学研究所高性能网络实验室,北京100190 [2]中国科学院软件研究所信息安全国家重点实验室,北京100190
出 处:《计算机研究与发展》2011年第12期2187-2200,共14页Journal of Computer Research and Development
基 金:国家自然科学基金项目(60703076);国家"八六三"高技术研究发展计划基金项目(2006AA01Z412;2007AA01Z451;2009AA01Z435);国家科技重大专项基金项目(2011ZX03002-005-02)
摘 要:共谋团体已成为P2P信任模型所面临的首要威胁,但是现有信任模型普遍缺乏针对共谋团体的有效识别和防范机制,使信任模型的安全性受到严重威胁.在充分考虑节点评分模糊性和共谋行为特征的基础上提出了一种基于模糊逻辑的共谋团体识别方法,该方法通过对信任模型中节点的评分行为进行分析,将语言变量、模糊逻辑引入到共谋团体识别过程中,能够更加有效地识别节点之间的共谋行为.实验表明,FDC模型在增强信任模型可靠性方面效果显著.As peer-to-peer (P2P) applications have achieved enormous success, the security of P2P network is getting more and more concerns. Particularly, the trust problem has become bottleneck because of the open and anonymous nature of P2P network. Trust model provides a security mechanism for P2P network and is proven to play an important role in improving the robustness of P2P network. However, colluding peers pose a serious threat to the security of trust model. For example, colluding peers may subvert the trust model by spreading plenty of false evaluation. Most existing trust models in P2P network are known as completely green hand in handling colluding peers. Some of them pose measures to make colluding attack difficult, but they are far from satisfying mainly because they cannot identify the colluding peers in P2P network. To address the problem, a fuzzy detector of collusion (FDC) is proposed to detect the existence of colluding peers by measuring similarity of peer's behavior. We show how to deploy FDC in distributed P2P network. The simulation results presented show that FDC is considerably effective in detecting and thwarting collusion attack and FDC can help the trust system in P2P network resist threats from colluding attackers.
分 类 号:TP309[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.87