春玉米抽穗期主要土壤参数空间变异特征研究  被引量:3

Spatial Statistic Properties of Soil Parameters in Spring Maize Heading Stage

在线阅读下载全文

作  者:翁白莎[1] 严登华[2] 王坤[2] 邢子强[2] 

机构地区:[1]天津大学建筑工程学院,天津300072 [2]中国水利水电科学研究院水资源研究所,北京100038

出  处:《中国农村水利水电》2011年第12期50-54,共5页China Rural Water and Hydropower

基  金:国家重点基础研究发展计划"973"项目(2010CB951102)

摘  要:以在东辽河流域进行的田间采样为基础,将经典统计学与地统计学相结合,对春玉米抽穗期3项土壤含水量指标和9项土壤参数指标进行了空间统计分析。研究结果表明,10cm深土壤含水量以及全N、粗砂粒、细砂粒、粗粉粒含量最佳半方差模型符合线状模型,20cm和30cm深土壤含水量最佳半方差模型符合球状模型,有机质、全P、细粉粒、粗黏粒和细黏粒含量最佳半方差模型符合高斯模型。20cm和30cm深土壤含水量、有机质、全P、细粉粒、粗黏粒和细黏粒含量7项指标均具有强烈的空间相关性,存在着明显的空间自相关格局,Kriging插值空间分布具有明显的片状和斑块状特点。Based on the experimental data collected from the Dongliao River Basin, an analysis is made of statistics and geo-statistics to investigate the spatial variability of soil parameters and soil moisture of spring maize during August 2009. The results show that the optimum semi-variogram models of soil moisture in 10 cm-deep, total nitrogen, coarse sand, fine sand and coarse silt are the linear model. The semi-variogram models of soil moisture in 20 cm-deep and 30 cm-deep display the spherical model. The semi-vario- gram models of organic matter, total phosphorus, fine silt, coarse clay and fine clay are best described with the Gaussian model. There is a strong spatial correlation for soil moisture in 20 cm-deep and 30 cm-deep, organic matter, total phosphorus, fine silt, coarse clay and fine clay. There spatial autocorrelation are also significant. Kriging-interpolating maps of the above-mentioned soil parameters had obvious slabby and plaques characteristics.

关 键 词:土壤水分 土壤参数 半方差理论 克里格方法 

分 类 号:S152.7[农业科学—土壤学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象