A NON-OSCILLATORY KINETIC SCHEME FOR MULTI-COMPONENT FLOWS WITH THE EQUATION OF STATE FOR A STIFFENED GAS  被引量:2

A NON-OSCILLATORY KINETIC SCHEME FOR MULTI-COMPONENT FLOWS WITH THE EQUATION OF STATE FOR A STIFFENED GAS

在线阅读下载全文

作  者:Yibing Chen Song Jiang 

机构地区:[1]Institute of Applied Physics and Computational Mathematics P.O. Box 8009, Beijing 100088, China

出  处:《Journal of Computational Mathematics》2011年第6期661-683,共23页计算数学(英文)

摘  要:We extend the traditional kinetic scheme for ideal gases to the Euler equations with the equation of state for a multi-component stiffened gas. Based on a careful analysis of the oscillation mechanism of the traditional kinetic scheme across contact discontinuities, we propose a new non-oscillatory kinetic (NOK) scheme for multi-component stiffened gases. The basic idea in the construction is to use a flux splitting technique to construct numerical fluxes which do not depend on the concrete form of the equilibrium state. The new scheme can not only can avoid spurious oscillations of the pressure and velocity near a material interface which are observed in the traditional kinetic schemes such as the kinetic flux vector splitting (KFVS) and BGK schemes, but also can deal with the stiffened gas equation of state. Moreover, we also carry out a careful analysis on the consistency condition, truncation error and positivity of the NOK scheme. A number of 1D and 2D numerical tests are presented which demonstrate the accuracy and robustness of the new scheme in the simulation of problems with smooth, weak and strong shock wave regions.We extend the traditional kinetic scheme for ideal gases to the Euler equations with the equation of state for a multi-component stiffened gas. Based on a careful analysis of the oscillation mechanism of the traditional kinetic scheme across contact discontinuities, we propose a new non-oscillatory kinetic (NOK) scheme for multi-component stiffened gases. The basic idea in the construction is to use a flux splitting technique to construct numerical fluxes which do not depend on the concrete form of the equilibrium state. The new scheme can not only can avoid spurious oscillations of the pressure and velocity near a material interface which are observed in the traditional kinetic schemes such as the kinetic flux vector splitting (KFVS) and BGK schemes, but also can deal with the stiffened gas equation of state. Moreover, we also carry out a careful analysis on the consistency condition, truncation error and positivity of the NOK scheme. A number of 1D and 2D numerical tests are presented which demonstrate the accuracy and robustness of the new scheme in the simulation of problems with smooth, weak and strong shock wave regions.

关 键 词:Kinetic scheme NON-OSCILLATION MULTI-COMPONENT Stiffened gases. 

分 类 号:O4-4[理学—物理] TQ531[化学工程—煤化学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象