机构地区:[1]State Key Laboratory of Astronautic Dynamics, Xi 'an 710043, China [2]College of Sciences, National University of Defense Technology, Changsha 410073, China
出 处:《Chinese Journal of Aeronautics》2011年第6期789-796,共8页中国航空学报(英文版)
基 金:National Natural Science Foundation of China (61002033, 60902089); Open Research Fund of State Key Laboratory of Astronautic Dynamics (2011ADL-DW0103)
摘 要:We study on reduced dynamic orbit determination using differenced phase in adjacent epochs for spacebome dual-frequency GPS. This method not only overcomes the shortcomings that the epoch-difference kinematic method cannot be used when observation geometry is poor or observations are insufficient, but also avoids solving the ambiguity in the zero-difference reduced dynamic method. As the epoch-difference method is not sensitive to the impact of phase cycle slips, it can lower the difficulty of slip detection in phase observation preprocessing. In the solution strategies, we solve the high-dimensional matrix computation problems by decomposing the long observation arc into a number of short arcs. By gravity recovery and climate experiment (GRACE) satellite orbit determination and compared with GeoForschungsZentrum (GFZ) post science orbit, for epoch-difference reduced dynamic method, the root mean squares (RMSs) of radial, transverse and normal components are 1.92 cm, 3.83 cm and 3.80 cm, and the RMS in three dimensions is 5.76 cm. The solution's accuracy is comparable to the zero-difference reduced dynamic method.We study on reduced dynamic orbit determination using differenced phase in adjacent epochs for spacebome dual-frequency GPS. This method not only overcomes the shortcomings that the epoch-difference kinematic method cannot be used when observation geometry is poor or observations are insufficient, but also avoids solving the ambiguity in the zero-difference reduced dynamic method. As the epoch-difference method is not sensitive to the impact of phase cycle slips, it can lower the difficulty of slip detection in phase observation preprocessing. In the solution strategies, we solve the high-dimensional matrix computation problems by decomposing the long observation arc into a number of short arcs. By gravity recovery and climate experiment (GRACE) satellite orbit determination and compared with GeoForschungsZentrum (GFZ) post science orbit, for epoch-difference reduced dynamic method, the root mean squares (RMSs) of radial, transverse and normal components are 1.92 cm, 3.83 cm and 3.80 cm, and the RMS in three dimensions is 5.76 cm. The solution's accuracy is comparable to the zero-difference reduced dynamic method.
关 键 词:dual-frequency GPS phase difference in adjacent epochs SATELLITE reduced dynamic orbit determination
分 类 号:P228[天文地球—大地测量学与测量工程] V556.3[天文地球—测绘科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...