机构地区:[1]estate Key Laboratory of Oncology in South China [2]Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P. R. China [3]Department of Biochemistry, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510060, P. R. China.
出 处:《Chinese Journal of Cancer》2011年第12期853-860,共8页
基 金:supported by grants from theNational Natural Science Foundation of China (No.81172345 and No. 30973506);the National High Technology Research and Development Program of China (863 Program) (2006AA02A404 to Y-X.Z.)
摘 要:Nucleophosmin/B23 (NPM) is a universally expressed nucleolar phosphoprotein that participates in proliferation, apoptosis, ribosome assembly, and centrosome duplication; however, the role of NPM in cell cycle regulation is not well characterized. We investigated the mechanism by which NPM is involved in cell cycle regulation. NPM was knocked down using siRNA in HepG2 hepatoblastoma cells. NPM translocation following actinomycin D (ActD) treatment was investigated using immunofluorescent staining. Expression of NPM and other factors involved in cell cycle regulation was examined by Western blotting. Cell cycle distribution was measured using flow cytometry to detect 5-ethynyl-2′-deoxyuridine (EdU) incorporation. Cell proliferation was quantified by the MTT assay. Knockdown of NPM increased the percentage of HepG2 cells in S phase and led to decreased expression of P53 and P21Cip1/WAF1. S-phase arrest in HepG2 cells was significantly enhanced by ActD treatment. Furthermore, knockdown of NPM abrogated ActD-induced G2/M phase cell cycle arrest. Taken together, these data demonstrate that inhibition of NPM has a significant effect on the cell cycle.Nucleophosmin/B23 (NPM) is a universally expressed nucleolar phosphoprotein that participates in proliferation, apoptosis, ribosome assembly, and centrosome duplication; however, the role of NPM in cell cycle regulation is not well characterized. We investigated the mechanism by which NPM is involved in cell cycle regulation. NPM was knocked down using siRNA in HepG2 hepatoblastoma cells. NPM translocation following actinomycin D (ActD) treatment was investigated using immunofluorescent staining. Expression of NPM and other factors involved in cell cycle regulation was examined by Western blotting. Cell cycle distribution was measured using flow cytometry to detect 5-ethynyl-2'-deoxyuridine (EdU) incorporation. Cell proliferation was quantified by the MTT assay. Knockdown of NPM increased the percentage of HepG2 cells in S phase and led to decreased expression of P53 and p21^OPTWAF1. S-phase arrest in HepG2 cells was significantly enhanced by ActD treatment. Furthermore, knockdown of NPM abrogated ActDinduced GJM phase cell cycle arrest. Taken together, these data demonstrate that inhibition of NPM has a significant effect on the cell cycle.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...