Robust stability criteria for uncertain linear systems with interval time-varying delay  被引量:16

Robust stability criteria for uncertain linear systems with interval time-varying delay

在线阅读下载全文

作  者:Krishnan RAMAKRISHNAN Goshaidas RAY 

机构地区:[1]Department of Electrical Engineering Indian Institute of Technology Kharagpur

出  处:《控制理论与应用(英文版)》2011年第4期559-566,共8页

摘  要:This paper considers the robust delay-dependent stability problem of a class of linear uncertain system with interval time-varying delay and proposes less conservative stability criteria for computing the maximum allowable bound of the delay range. Less conservatism of the proposed stability criteria is attributed to the delay-central point method of stability analysis, wherein the delay interval is partitioned into two subintervals of equal length, and the time derivative of a candidate Lyapunov-Krasovskii functional based on delay decomposition technique is evaluated in each of these delay segments. In deriving the stability conditions in LMI framework, neither model transformations nor bounding techniques using free-weighting matrix variables are employed for dealing the cross-terms that emerge from the time derivative of the Lyapunov-Krasovskii functional; instead, they are dealt using tighter integral inequalities. The proposed analysis subsequently yields a stability condition in convex LMI framework that can be solved using standard numerical packages. For deriving robust stability conditions, two categories of system uncertainties, namely, time-varying structured and polytopic-type uncertainties, are considered. The effectiveness of the proposed stability criteria is validated through standard numerical examples.This paper considers the robust delay-dependent stability problem of a class of linear uncertain system with interval time-varying delay and proposes less conservative stability criteria for computing the maximum allowable bound of the delay range. Less conservatism of the proposed stability criteria is attributed to the delay-central point method of stability analysis, wherein the delay interval is partitioned into two subintervals of equal length, and the time derivative of a candidate Lyapunov-Krasovskii functional based on delay decomposition technique is evaluated in each of these delay segments. In deriving the stability conditions in LMI framework, neither model transformations nor bounding techniques using free-weighting matrix variables are employed for dealing the cross-terms that emerge from the time derivative of the Lyapunov-Krasovskii functional; instead, they are dealt using tighter integral inequalities. The proposed analysis subsequently yields a stability condition in convex LMI framework that can be solved using standard numerical packages. For deriving robust stability conditions, two categories of system uncertainties, namely, time-varying structured and polytopic-type uncertainties, are considered. The effectiveness of the proposed stability criteria is validated through standard numerical examples.

关 键 词:Lyapunov-Krasovskii functional Robust stability Interval time-delay Delay-range-dependent stability Linear matrix inequality 

分 类 号:TP13[自动化与计算机技术—控制理论与控制工程] O317[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象