检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王芳贵[1] Fang Gui WANG(College of Mathematics and Software Science,Sichuan Normal University Chengdu 610068,P,R.China)
机构地区:[1]四川师范大学数学与软件科学学院,成都610068
出 处:《数学学报(中文版)》2012年第1期65-76,共12页Acta Mathematica Sinica:Chinese Series
基 金:国家自然科学基金资助项目(10671137)
摘 要:整环R称为ω-凝聚整环,是指R的每个有限型理想是有限表现型的.本文证明了ω-凝聚整环是v-凝聚整环,且若(RDTF,M)是Milnor方图,则在Ⅰ型情形,R是ω-凝聚整环当且仅当D和T都是ω-整环,且T_M是赋值环;对于Ⅱ-型情形,R是ω-凝聚整环当且仅当D是域,[F:D]<∞,M是R的有限型理想,T是ω-凝聚整环,且R_M是凝聚整环.A domain R is called w-coherent if every finite type ideal is of finitely presented type.In this paper we show that w-coherent domains are v-coherent and if (RDTF,M) is a Milnor square,then for the case that F is the quotient field of D,R is w-coherent if and only if D and T are in-coherent and Tm is a valuation domain;and for the case that F is not the quotient field of D,R is w-coherent if and only if D is a field,[F:D]∞,M is a finite type ideal of R,T is w-coherent and Rm is coherent.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.219.151.249