检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]徐州工程学院化学化工学院,江苏徐州221008
出 处:《北京理工大学学报》2011年第12期1469-1473,1488,共6页Transactions of Beijing Institute of Technology
基 金:国家自然科学基金资助项目(21075138);徐州市科技局基金资助项目(XZZD1104);贾汪科技局基金资助项目(XM10A05)
摘 要:以电性距离矢量Mt表征165种非离子性有机物(NOC)的分子结构.利用多元回归方法建立了122种NOC的生物富集因子(lg BCF)与32个Mt的数学模型,其相关系数R为0.976.经逐步回归建立最佳四变量(M15,M17,M36,M91)模型,其R为0.960;并以Jackknife法检验,其LOO交互检验系数(q2)为0.915.这4个Mt参数揭示了影响NOC生物富集因子的主要因素,结果表明该模型具有良好的估算能力与鲁棒性.以111个NOC为训练集的生物富集模型作用于11个NOC的检验集,显示出良好的预测能力.Molecular electronegativity-distance vector (Mt) was used to describe the molecular structures of 165 nonionic organic compounds in this paper. A quantitative linear relationship between 32 Mt descriptors and bioconcentration factor (lg BCF) of 122 NOC was set up using the method of multiple linear regression (MLR). The satisfactory model of 4 parameters (such as M15, M17, M36, M91) was built by stepwise multiple regression and the Jackknifed method (the leave-one-out, LOO), of which the calibrated correlation coefficient (R) was 0.960 and the validated correlation coefficient (q2) was 0.915. The 4-variable model has shed light on some main structural factors influencing the BCF on NOC, which shows the good estimation ability and robustness. A prediction power for the external sample of 11 NOC was validated by the model built from the training set with 111 NOC.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.70