检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《数学理论与应用》2011年第4期116-121,共6页Mathematical Theory and Applications
摘 要:从主成分分析法的基本原理入手,针对教学过程中学生对主成分分析法感到费解的三个问题进行了逐一剖析:1.为什么主成分系数是经标准差标准化后原始变量的协方差矩阵的特征向量?2.特征向量正负号如何选取?对进一步的研究如计算综合得分和聚类分析有何影响?3.主成分载荷值是如何得来的?同时指出有些教材在计算主成分得分时混淆了主成分载荷和特征向量的概念,以致造成错误的结果.Starting from the basic principles of Principal Component Analysis ( PCA), dissected the three issues which always puzzling students in the process of teaching one by one. The first one is, why the principal component coefficients is the eigenvectors of the covariance matrix of normalized original variables? And the second one, How to select the sign of eigenvectors? What is the impact on further studies such as the calculation of composite scores and cluster analysis? The third one, How the principal component loading values come from? Besides, confusion of the concept of principal component loading and eigenvectors in the process of calculating the principal component scores from some materials was pointed out, which would cause erroneous results.
关 键 词:主成分分析法 特征值 特征向量 主成分载荷 主成分得分
分 类 号:O212.4[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15